Namespaces
Variants
Actions

Difference between revisions of "Relative homological algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Homological algebra|homological algebra]] associated with a pair of Abelian categories <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810001.png" /> and a fixed functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810002.png" /> (cf. [[Abelian category|Abelian category]]). The functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810003.png" /> is taken to be additive, exact and faithful. A short exact sequence of objects of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810004.png" />,
+
<!--
 +
r0810001.png
 +
$#A+1 = 42 n = 0
 +
$#C+1 = 42 : ~/encyclopedia/old_files/data/R081/R.0801000 Relative homological algebra
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810005.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A [[Homological algebra|homological algebra]] associated with a pair of Abelian categories 
 +
and a fixed functor  $  \Delta : \mathfrak A \rightarrow \mathfrak M $(
 +
cf. [[Abelian category|Abelian category]]). The functor    \Delta
 +
is taken to be additive, exact and faithful. A short exact sequence of objects of    \mathfrak A ,
 +
 
 +
$$
 +
0  \rightarrow  A  \rightarrow  B  \rightarrow  C  \rightarrow  0
 +
$$
  
 
is said to be admissible if the exact sequence
 
is said to be admissible if the exact sequence
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810006.png" /></td> </tr></table>
+
$$
 +
0 \rightarrow  \Delta A  \rightarrow  \Delta B  \rightarrow  \Delta C  \rightarrow  0
 +
$$
  
splits in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810007.png" /> (cf. [[Split sequence|Split sequence]]). By means of the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810008.png" /> of admissible exact sequences, the class of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r0810009.png" />-projective (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100010.png" />-injective) objects is defined as the class of those objects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100011.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100012.png" />) for which the functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100013.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100014.png" />) is exact on the admissible short exact sequences.
+
splits in   \mathfrak M (
 +
cf. [[Split sequence|Split sequence]]). By means of the class   {\mathcal E}
 +
of admissible exact sequences, the class of   {\mathcal E} -
 +
projective (respectively,   {\mathcal E} -
 +
injective) objects is defined as the class of those objects   P (
 +
respectively,   Q )  
 +
for which the functor   \mathop{\rm Hom} _ {\mathfrak A} ( P, -) (
 +
respectively,   \mathop{\rm Hom} _ {\mathfrak A} ( - , Q) )  
 +
is exact on the admissible short exact sequences.
  
Any projective object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100015.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100016.png" /> is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100017.png" />-projective, although this does not mean that in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100018.png" /> there are enough relative projective objects (i.e. that for any object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100019.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100020.png" />, an admissible epimorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100021.png" /> of a certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100022.png" />-projective object of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100023.png" /> exists). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100024.png" /> contains enough <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100025.png" />-projective or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100026.png" />-injective objects, then the usual constructions of homological algebra make it possible to construct derived functors in this category, which are called relative derived functors.
+
Any projective object   P
 +
of   \mathfrak A
 +
is   {\mathcal E} -
 +
projective, although this does not mean that in   \mathfrak A
 +
there are enough relative projective objects (i.e. that for any object   A
 +
from   \mathfrak A ,  
 +
an admissible epimorphism   P \rightarrow A
 +
of a certain   {\mathcal E} -
 +
projective object of   \mathfrak A
 +
exists). If   \mathfrak A
 +
contains enough   {\mathcal E} -
 +
projective or   {\mathcal E} -
 +
injective objects, then the usual constructions of homological algebra make it possible to construct derived functors in this category, which are called relative derived functors.
  
Examples. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100027.png" /> be the category of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100028.png" />-modules over an associative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100029.png" /> with a unit, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100030.png" /> be the category of Abelian groups and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100031.png" /> be the functor which  "forgets"  the module structure. In this case all exact sequences are admissible, and as a result the  "absolute"  (i.e. usual) homological algebra is obtained.
+
Examples. Let   \mathfrak A
 +
be the category of   R -
 +
modules over an associative ring   R
 +
with a unit, let   \mathfrak M
 +
be the category of Abelian groups and let $  \Delta : \mathfrak A \rightarrow \mathfrak M $
 +
be the functor which  "forgets"  the module structure. In this case all exact sequences are admissible, and as a result the  "absolute"  (i.e. usual) homological algebra is obtained.
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100032.png" /> is a group, then every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100033.png" />-module is, in particular, an Abelian group. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100034.png" /> is an algebra over a commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100035.png" />, then every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100036.png" />-module is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100037.png" />-module. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100039.png" /> are rings and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100040.png" />, then every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100041.png" />-module is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081000/r08100042.png" />-module. In all these cases there is a functor from one Abelian category into the other defining the relative derived functors.
+
If   G
 +
is a group, then every   G -
 +
module is, in particular, an Abelian group. If   R
 +
is an algebra over a commutative ring   k ,  
 +
then every   R -
 +
module is a   k -
 +
module. If   R
 +
and   S
 +
are rings and   R \supset S ,  
 +
then every   R -
 +
module is an   S -
 +
module. In all these cases there is a functor from one Abelian category into the other defining the relative derived functors.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. MacLane,  "Homology" , Springer  (1963)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.C. Moore,  S. Eilenberg,  "Foundations of relative homological algebra" , Amer. Math. Soc.  (1965)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  S. MacLane,  "Homology" , Springer  (1963)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.C. Moore,  S. Eilenberg,  "Foundations of relative homological algebra" , Amer. Math. Soc.  (1965)</TD></TR></table>

Latest revision as of 08:10, 6 June 2020


A homological algebra associated with a pair of Abelian categories ( \mathfrak A , \mathfrak M ) and a fixed functor \Delta : \mathfrak A \rightarrow \mathfrak M ( cf. Abelian category). The functor \Delta is taken to be additive, exact and faithful. A short exact sequence of objects of \mathfrak A ,

0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0

is said to be admissible if the exact sequence

0 \rightarrow \Delta A \rightarrow \Delta B \rightarrow \Delta C \rightarrow 0

splits in \mathfrak M ( cf. Split sequence). By means of the class {\mathcal E} of admissible exact sequences, the class of {\mathcal E} - projective (respectively, {\mathcal E} - injective) objects is defined as the class of those objects P ( respectively, Q ) for which the functor \mathop{\rm Hom} _ {\mathfrak A} ( P, -) ( respectively, \mathop{\rm Hom} _ {\mathfrak A} ( - , Q) ) is exact on the admissible short exact sequences.

Any projective object P of \mathfrak A is {\mathcal E} - projective, although this does not mean that in \mathfrak A there are enough relative projective objects (i.e. that for any object A from \mathfrak A , an admissible epimorphism P \rightarrow A of a certain {\mathcal E} - projective object of \mathfrak A exists). If \mathfrak A contains enough {\mathcal E} - projective or {\mathcal E} - injective objects, then the usual constructions of homological algebra make it possible to construct derived functors in this category, which are called relative derived functors.

Examples. Let \mathfrak A be the category of R - modules over an associative ring R with a unit, let \mathfrak M be the category of Abelian groups and let \Delta : \mathfrak A \rightarrow \mathfrak M be the functor which "forgets" the module structure. In this case all exact sequences are admissible, and as a result the "absolute" (i.e. usual) homological algebra is obtained.

If G is a group, then every G - module is, in particular, an Abelian group. If R is an algebra over a commutative ring k , then every R - module is a k - module. If R and S are rings and R \supset S , then every R - module is an S - module. In all these cases there is a functor from one Abelian category into the other defining the relative derived functors.

References

[1] S. MacLane, "Homology" , Springer (1963)
[2] J.C. Moore, S. Eilenberg, "Foundations of relative homological algebra" , Amer. Math. Soc. (1965)
How to Cite This Entry:
Relative homological algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Relative_homological_algebra&oldid=48497
This article was adapted from an original article by V.E. GovorovA.V. Mikhalev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article