Difference between revisions of "Regularity criteria"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | r0809101.png | ||
| + | $#A+1 = 13 n = 0 | ||
| + | $#C+1 = 13 : ~/encyclopedia/old_files/data/R080/R.0800910 Regularity criteria | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''for summation methods'' | ''for summation methods'' | ||
Conditions for the regularity of [[Summation methods|summation methods]]. | Conditions for the regularity of [[Summation methods|summation methods]]. | ||
| − | For a [[Matrix summation method|matrix summation method]] defined by a transformation of a sequence into a sequence by means of a matrix | + | For a [[Matrix summation method|matrix summation method]] defined by a transformation of a sequence into a sequence by means of a matrix $ \| a _ {nk} \| $, |
| + | $ n , k = 1 , 2 \dots $ | ||
| + | the conditions | ||
| − | + | $$ \tag{1 } | |
| + | \left . | ||
| − | are necessary and sufficient for regularity. For the matrix summation method defined by a transformation of a series into a sequence by means of a matrix | + | are necessary and sufficient for regularity. For the matrix summation method defined by a transformation of a series into a sequence by means of a matrix $ \| g _ {nk} \| $, |
| + | $ n , k = 1 , 2 \dots $ | ||
| + | necessary and sufficient conditions for regularity are as follows: | ||
| − | + | $$ \tag{2 } | |
| + | \left . | ||
| − | The conditions (1) were originally established by O. Toeplitz [[#References|[1]]] for triangular summation methods, and were then extended by H. Steinhaus [[#References|[2]]] to arbitrary matrix summation methods. In connection with this, a matrix satisfying conditions (1) is sometimes called a Toeplitz matrix or a | + | The conditions (1) were originally established by O. Toeplitz [[#References|[1]]] for triangular summation methods, and were then extended by H. Steinhaus [[#References|[2]]] to arbitrary matrix summation methods. In connection with this, a matrix satisfying conditions (1) is sometimes called a Toeplitz matrix or a $ T $- |
| + | matrix. | ||
| − | For a [[Semi-continuous summation method|semi-continuous summation method]], defined by a transformation of a sequence into a function by means of a semi-continuous matrix | + | For a [[Semi-continuous summation method|semi-continuous summation method]], defined by a transformation of a sequence into a function by means of a semi-continuous matrix $ \| a _ {k} ( \omega ) \| $ |
| + | or a transformation of a series into a function by means of a semi-continuous matrix $ \| g _ {k} ( \omega ) \| $, | ||
| + | there are regularity criteria analogous to conditions (1) and (2), respectively. | ||
A regular matrix summation method is completely regular if all entries of the transformation matrix are non-negative. This condition is in general not necessary for complete regularity. | A regular matrix summation method is completely regular if all entries of the transformation matrix are non-negative. This condition is in general not necessary for complete regularity. | ||
| Line 19: | Line 40: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Toeplitz, ''Prace Mat. Fiz.'' , '''22''' (1911) pp. 113–119</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Steinhaus, "Some remarks on the generalization of the concept of limit" , ''Selected Math. Papers'' , Polish Acad. Sci. (1985) pp. 88–100</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.H. Hardy, "Divergent series" , Clarendon Press (1949)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.G. Cooke, "Infinite matrices and sequence spaces" , Macmillan (1950)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> O. Toeplitz, ''Prace Mat. Fiz.'' , '''22''' (1911) pp. 113–119</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> H. Steinhaus, "Some remarks on the generalization of the concept of limit" , ''Selected Math. Papers'' , Polish Acad. Sci. (1985) pp. 88–100</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> G.H. Hardy, "Divergent series" , Clarendon Press (1949)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R.G. Cooke, "Infinite matrices and sequence spaces" , Macmillan (1950)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
Cf. also [[Regular summation methods|Regular summation methods]]. | Cf. also [[Regular summation methods|Regular summation methods]]. | ||
| − | Usually, the phrase [[Toeplitz matrix|Toeplitz matrix]] refers to a matrix | + | Usually, the phrase [[Toeplitz matrix|Toeplitz matrix]] refers to a matrix $ ( a _ {ij} ) $ |
| + | with $ a _ {ij} = a _ {kl} $ | ||
| + | for all $ i, j, k, l $ | ||
| + | with $ i- j= k- l $. | ||
Revision as of 08:10, 6 June 2020
for summation methods
Conditions for the regularity of summation methods.
For a matrix summation method defined by a transformation of a sequence into a sequence by means of a matrix $ \| a _ {nk} \| $, $ n , k = 1 , 2 \dots $ the conditions
$$ \tag{1 } \left . are necessary and sufficient for regularity. For the matrix summation method defined by a transformation of a series into a sequence by means of a matrix $ \| g _ {nk} \| $, $ n , k = 1 , 2 \dots $ necessary and sufficient conditions for regularity are as follows: $$ \tag{2 } \left .
The conditions (1) were originally established by O. Toeplitz [1] for triangular summation methods, and were then extended by H. Steinhaus [2] to arbitrary matrix summation methods. In connection with this, a matrix satisfying conditions (1) is sometimes called a Toeplitz matrix or a $ T $- matrix.
For a semi-continuous summation method, defined by a transformation of a sequence into a function by means of a semi-continuous matrix $ \| a _ {k} ( \omega ) \| $ or a transformation of a series into a function by means of a semi-continuous matrix $ \| g _ {k} ( \omega ) \| $, there are regularity criteria analogous to conditions (1) and (2), respectively.
A regular matrix summation method is completely regular if all entries of the transformation matrix are non-negative. This condition is in general not necessary for complete regularity.
References
| [1] | O. Toeplitz, Prace Mat. Fiz. , 22 (1911) pp. 113–119 |
| [2] | H. Steinhaus, "Some remarks on the generalization of the concept of limit" , Selected Math. Papers , Polish Acad. Sci. (1985) pp. 88–100 |
| [3] | G.H. Hardy, "Divergent series" , Clarendon Press (1949) |
| [4] | R.G. Cooke, "Infinite matrices and sequence spaces" , Macmillan (1950) |
Comments
Cf. also Regular summation methods.
Usually, the phrase Toeplitz matrix refers to a matrix $ ( a _ {ij} ) $ with $ a _ {ij} = a _ {kl} $ for all $ i, j, k, l $ with $ i- j= k- l $.
Regularity criteria. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Regularity_criteria&oldid=48488