|
|
Line 1: |
Line 1: |
− | A [[P-group|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r0807702.png" />-group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r0807703.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r0807704.png" /> and any integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r0807705.png" /> an equality
| + | <!-- |
| + | r0807702.png |
| + | $#A+1 = 33 n = 0 |
| + | $#C+1 = 33 : ~/encyclopedia/old_files/data/R080/R.0800770 Regular \BMI p\EMI\AAhgroup |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r0807706.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | holds, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r0807707.png" /> are elements of the [[Commutator subgroup|commutator subgroup]] of the subgroup generated by the elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r0807708.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r0807709.png" />. Subgroups and quotient groups of a regular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077010.png" />-group are regular. A finite <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077011.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077012.png" /> is regular if and only if for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077013.png" />,
| + | A [[P-group| $ p $- |
| + | group]] $ G $ |
| + | such that for all $ a , b \in G $ |
| + | and any integer $ n = p ^ \alpha $ |
| + | an equality |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077014.png" /></td> </tr></table>
| + | $$ |
| + | ( a b ) ^ {n} = a ^ {n} b ^ {n} s _ {1} ^ {n} \dots s _ {t} ^ {n} |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077015.png" /> is an element of the commutator subgroup of the subgroup generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077017.png" />. | + | holds, where $ s _ {1} \dots s _ {t} $ |
| + | are elements of the [[Commutator subgroup|commutator subgroup]] of the subgroup generated by the elements $ a $ |
| + | and $ b $. |
| + | Subgroups and quotient groups of a regular $ p $- |
| + | group are regular. A finite $ p $- |
| + | group $ G $ |
| + | is regular if and only if for all $ a , b \in G $, |
| | | |
− | The elements of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077019.png" />, in a regular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077020.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077021.png" /> form a [[Characteristic subgroup|characteristic subgroup]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077022.png" />, and the elements of order at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077023.png" /> form a [[Fully-characteristic subgroup|fully-characteristic subgroup]], <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077024.png" />.
| + | $$ |
| + | a ^ {p} b ^ {p} = ( a b ) ^ {p} s ^ {p} , |
| + | $$ |
| | | |
− | Examples of regular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077025.png" />-groups are <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077026.png" />-groups of nilpotency class at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077027.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077028.png" />-groups of order at most <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077029.png" />. For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077030.png" />, there is a non-regular <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077031.png" />-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077032.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077033.png" /> (it is isomorphic to the [[Wreath product|wreath product]] of the cyclic group of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r080/r080770/r08077034.png" /> with itself). | + | where $ s $ |
| + | is an element of the commutator subgroup of the subgroup generated by $ a $ |
| + | and $ b $. |
| + | |
| + | The elements of the form $ a ^ {p ^ \alpha } $, |
| + | $ a \in G $, |
| + | in a regular $ p $- |
| + | group $ G $ |
| + | form a [[Characteristic subgroup|characteristic subgroup]], $ C ^ \alpha ( G) $, |
| + | and the elements of order at most $ p ^ \alpha $ |
| + | form a [[Fully-characteristic subgroup|fully-characteristic subgroup]], $ C _ \alpha ( G) $. |
| + | |
| + | Examples of regular $ p $- |
| + | groups are $ p $- |
| + | groups of nilpotency class at most $ p - 1 $, |
| + | and $ p $- |
| + | groups of order at most $ p ^ {p} $. |
| + | For any $ p $, |
| + | there is a non-regular $ p $- |
| + | group $ S ( p ^ {2} ) $ |
| + | of order $ p ^ {2} $( |
| + | it is isomorphic to the [[Wreath product|wreath product]] of the cyclic group of order $ p $ |
| + | with itself). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Hall, "Group theory" , Macmillan (1959)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Hall, "Group theory" , Macmillan (1959)</TD></TR></table> |
A $ p $-
group $ G $
such that for all $ a , b \in G $
and any integer $ n = p ^ \alpha $
an equality
$$
( a b ) ^ {n} = a ^ {n} b ^ {n} s _ {1} ^ {n} \dots s _ {t} ^ {n}
$$
holds, where $ s _ {1} \dots s _ {t} $
are elements of the commutator subgroup of the subgroup generated by the elements $ a $
and $ b $.
Subgroups and quotient groups of a regular $ p $-
group are regular. A finite $ p $-
group $ G $
is regular if and only if for all $ a , b \in G $,
$$
a ^ {p} b ^ {p} = ( a b ) ^ {p} s ^ {p} ,
$$
where $ s $
is an element of the commutator subgroup of the subgroup generated by $ a $
and $ b $.
The elements of the form $ a ^ {p ^ \alpha } $,
$ a \in G $,
in a regular $ p $-
group $ G $
form a characteristic subgroup, $ C ^ \alpha ( G) $,
and the elements of order at most $ p ^ \alpha $
form a fully-characteristic subgroup, $ C _ \alpha ( G) $.
Examples of regular $ p $-
groups are $ p $-
groups of nilpotency class at most $ p - 1 $,
and $ p $-
groups of order at most $ p ^ {p} $.
For any $ p $,
there is a non-regular $ p $-
group $ S ( p ^ {2} ) $
of order $ p ^ {2} $(
it is isomorphic to the wreath product of the cyclic group of order $ p $
with itself).
References
[1] | M. Hall, "Group theory" , Macmillan (1959) |