Difference between revisions of "Regression spectrum"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | r0806501.png | ||
| + | $#A+1 = 19 n = 0 | ||
| + | $#C+1 = 19 : ~/encyclopedia/old_files/data/R080/R.0800650 Regression spectrum | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | The spectrum of a stochastic process occurring in the regression scheme for a stationary time series. Thus, let a [[Stochastic process|stochastic process]] $ y _ {t} $ | |
| + | which is observable for $ t = 1 \dots n $ | ||
| + | be represented in the form | ||
| − | + | $$ \tag{1 } | |
| + | y _ {t} = m _ {t} + x _ {t} , | ||
| + | $$ | ||
| − | where | + | where $ x _ {t} $ |
| + | is a [[Stationary stochastic process|stationary stochastic process]] with $ {\mathsf E} x _ {t} \equiv 0 $, | ||
| + | and let the mean value $ {\mathsf E} y _ {t} = m _ {t} $ | ||
| + | be expressed in the form of a linear [[Regression|regression]] | ||
| − | The regression spectrum plays an important role in problems of estimating the regression coefficients in the scheme (1)–(2). For example, the elements of a regression spectrum can be used to express a necessary and sufficient condition for the asymptotic efficiency of an estimator for | + | $$ \tag{2 } |
| + | m _ {t} = \ | ||
| + | \sum _ { k= } 1 ^ { s } | ||
| + | \beta _ {k} \phi _ {t} ^ {(} k) , | ||
| + | $$ | ||
| + | |||
| + | where $ \phi ^ {(} k) = ( \phi _ {1} ^ {(} k) \dots \phi _ {n} ^ {(} k) ) $, | ||
| + | $ k = 1 \dots s $, | ||
| + | are known regression vectors and $ \beta _ {1} \dots \beta _ {s} $ | ||
| + | are unknown regression coefficients (cf. [[Regression coefficient|Regression coefficient]]). Let $ M ( \lambda ) $ | ||
| + | be the spectral distribution function of the regression vectors $ \phi ^ {(} 1) \dots \phi ^ {(} s) $( | ||
| + | cf. [[Spectral analysis of a stationary stochastic process|Spectral analysis of a stationary stochastic process]]). The regression spectrum for $ M ( \lambda ) $ | ||
| + | is the set of all $ \lambda $ | ||
| + | such that $ M ( \lambda _ {2} ) - M ( \lambda _ {1} ) > 0 $ | ||
| + | for any interval $ ( \lambda _ {1} , \lambda _ {2} ) $ | ||
| + | containing $ \lambda $, | ||
| + | $ \lambda _ {1} < \lambda < \lambda _ {2} $. | ||
| + | |||
| + | The regression spectrum plays an important role in problems of estimating the regression coefficients in the scheme (1)–(2). For example, the elements of a regression spectrum can be used to express a necessary and sufficient condition for the asymptotic efficiency of an estimator for $ \beta $ | ||
| + | by the method of least squares. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> U. Grenander, M. Rosenblatt, "Statistical analysis of stationary time series" , Wiley (1957)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> U. Grenander, M. Rosenblatt, "Statistical analysis of stationary time series" , Wiley (1957)</TD></TR></table> | ||
Revision as of 08:10, 6 June 2020
The spectrum of a stochastic process occurring in the regression scheme for a stationary time series. Thus, let a stochastic process $ y _ {t} $
which is observable for $ t = 1 \dots n $
be represented in the form
$$ \tag{1 } y _ {t} = m _ {t} + x _ {t} , $$
where $ x _ {t} $ is a stationary stochastic process with $ {\mathsf E} x _ {t} \equiv 0 $, and let the mean value $ {\mathsf E} y _ {t} = m _ {t} $ be expressed in the form of a linear regression
$$ \tag{2 } m _ {t} = \ \sum _ { k= } 1 ^ { s } \beta _ {k} \phi _ {t} ^ {(} k) , $$
where $ \phi ^ {(} k) = ( \phi _ {1} ^ {(} k) \dots \phi _ {n} ^ {(} k) ) $, $ k = 1 \dots s $, are known regression vectors and $ \beta _ {1} \dots \beta _ {s} $ are unknown regression coefficients (cf. Regression coefficient). Let $ M ( \lambda ) $ be the spectral distribution function of the regression vectors $ \phi ^ {(} 1) \dots \phi ^ {(} s) $( cf. Spectral analysis of a stationary stochastic process). The regression spectrum for $ M ( \lambda ) $ is the set of all $ \lambda $ such that $ M ( \lambda _ {2} ) - M ( \lambda _ {1} ) > 0 $ for any interval $ ( \lambda _ {1} , \lambda _ {2} ) $ containing $ \lambda $, $ \lambda _ {1} < \lambda < \lambda _ {2} $.
The regression spectrum plays an important role in problems of estimating the regression coefficients in the scheme (1)–(2). For example, the elements of a regression spectrum can be used to express a necessary and sufficient condition for the asymptotic efficiency of an estimator for $ \beta $ by the method of least squares.
References
| [1] | U. Grenander, M. Rosenblatt, "Statistical analysis of stationary time series" , Wiley (1957) |
Regression spectrum. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Regression_spectrum&oldid=48476