Difference between revisions of "Regression coefficient"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0806301.png | ||
+ | $#A+1 = 13 n = 0 | ||
+ | $#C+1 = 13 : ~/encyclopedia/old_files/data/R080/R.0800630 Regression coefficient | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A coefficient of an independent variable in a [[Regression|regression]] equation. For example, in the linear regression equation $ {\mathsf E} ( Y \mid X = x ) = \beta _ {0} + \beta _ {1} x $, | |
+ | connecting the random variables $ Y $ | ||
+ | and $ X $, | ||
+ | the regression coefficients $ \beta _ {0} $ | ||
+ | and $ \beta _ {1} $ | ||
+ | are given by | ||
+ | |||
+ | $$ | ||
+ | \beta _ {0} = m _ {2} - \rho | ||
+ | \frac{\sigma _ {2} }{\sigma _ {1} } | ||
+ | m _ {1} ,\ \ | ||
+ | \beta _ {1} = \rho | ||
+ | \frac{\sigma _ {2} }{\sigma _ {1} } | ||
+ | , | ||
+ | $$ | ||
+ | |||
+ | where $ \rho $ | ||
+ | is the [[Correlation coefficient|correlation coefficient]] of $ X $ | ||
+ | and $ Y $, | ||
+ | $ m _ {1} = {\mathsf E} X $, | ||
+ | $ m _ {2} = {\mathsf E} Y $, | ||
+ | $ \sigma _ {1} ^ {2} = {\mathsf D} X $, | ||
+ | and $ \sigma _ {2} ^ {2} = {\mathsf D} Y $. | ||
+ | The calculation of estimates for regression coefficients (sample regression coefficients) is a fundamental problem of [[Regression analysis|regression analysis]]. |
Latest revision as of 08:10, 6 June 2020
A coefficient of an independent variable in a regression equation. For example, in the linear regression equation $ {\mathsf E} ( Y \mid X = x ) = \beta _ {0} + \beta _ {1} x $,
connecting the random variables $ Y $
and $ X $,
the regression coefficients $ \beta _ {0} $
and $ \beta _ {1} $
are given by
$$ \beta _ {0} = m _ {2} - \rho \frac{\sigma _ {2} }{\sigma _ {1} } m _ {1} ,\ \ \beta _ {1} = \rho \frac{\sigma _ {2} }{\sigma _ {1} } , $$
where $ \rho $ is the correlation coefficient of $ X $ and $ Y $, $ m _ {1} = {\mathsf E} X $, $ m _ {2} = {\mathsf E} Y $, $ \sigma _ {1} ^ {2} = {\mathsf D} X $, and $ \sigma _ {2} ^ {2} = {\mathsf D} Y $. The calculation of estimates for regression coefficients (sample regression coefficients) is a fundamental problem of regression analysis.
Regression coefficient. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Regression_coefficient&oldid=48474