Difference between revisions of "Real-analytic space"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0800301.png | ||
+ | $#A+1 = 38 n = 0 | ||
+ | $#C+1 = 38 : ~/encyclopedia/old_files/data/R080/R.0800030 Real\AAhanalytic space | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | An [[Analytic space|analytic space]] over the field $ \mathbf R $ | |
+ | of real numbers. Unlike in the case of complex-analytic spaces, the structure sheaves of real-analytic spaces need not be coherent (cf. [[Coherent sheaf|Coherent sheaf]]). Real-analytic spaces are said to be coherent if their structure sheaves are coherent. All real-analytic manifolds (i.e. smooth real-analytic spaces) are coherent real-analytic spaces. | ||
− | + | Let $ V _ {a} $ | |
+ | be the germ at a point $ a $ | ||
+ | of a real-analytic subset of $ \mathbf R ^ {n} $( | ||
+ | cf. [[Analytic set|Analytic set]]). This defines the germ at $ a $ | ||
+ | of a complex-analytic subset $ {\widetilde{V} } _ {a} $ | ||
+ | of the space $ \mathbf C ^ {n} $ | ||
+ | with the following equivalent properties: 1) $ \widetilde{V} _ {a} $ | ||
+ | is the intersection of all germs of complex-analytic sets containing $ V _ {a} $; | ||
+ | 2) if $ {\mathcal O} _ {V _ {a} } $ | ||
+ | is the analytic algebra of the germ $ V _ {a} $, | ||
+ | then $ {\mathcal O} _ {V _ {a} } \otimes \mathbf C $ | ||
+ | is the analytic algebra of the germ $ \widetilde{V} _ {a} $. | ||
+ | The germ $ \widetilde{V} _ {a} $ | ||
+ | is said to be the complexification of the germ $ V _ {a} $, | ||
+ | and $ V _ {a} $ | ||
+ | is said to be the real part of the germ $ \widetilde{V} _ {a} $. | ||
+ | Analogously, for any coherent real-analytic countably-infinite space $ X $ | ||
+ | it is possible to construct the complexification $ \widetilde{X} $, | ||
+ | which is a complex-analytic space. $ X $ | ||
+ | will then have a fundamental system of neighbourhoods in $ \widetilde{X} $ | ||
+ | which are Stein spaces (cf. [[Stein space|Stein space]]). | ||
− | + | The theory of coherent real-analytic spaces is similar to the theory of complex Stein spaces. Global sections of any [[Coherent analytic sheaf|coherent analytic sheaf]] of modules $ F $ | |
+ | on a coherent real-analytic countably-infinite space $ X $ | ||
+ | generate modules of germs of its sections at any point of $ X $, | ||
+ | and all groups $ H ^ {q} ( X, F ) $ | ||
+ | vanish if $ q \geq 1 $. | ||
− | such that | + | For any finite-dimensional coherent real-analytic countably-infinite space $ ( X, {\mathcal O} _ {X} ) $ |
+ | there exists a morphism | ||
+ | |||
+ | $$ | ||
+ | f = ( f _ {0} , f _ {1} ): | ||
+ | ( X, {\mathcal O} _ {X} ) \rightarrow \ | ||
+ | ( \mathbf R ^ {n} , {\mathcal O} _ {\mathbf R ^ {n} } ) | ||
+ | $$ | ||
+ | |||
+ | such that $ f _ {0} $ | ||
+ | is a proper one-to-one mapping of $ X $ | ||
+ | into a coherent subspace in $ \mathbf R ^ {n} $, | ||
+ | while $ f $ | ||
+ | is an imbedding at the smooth points of $ X $. | ||
+ | In particular, any (Hausdorff and countably-infinite) real-analytic manifold is isomorphic to a real-analytic submanifold in $ \mathbf R ^ {n} $. | ||
+ | For a reduced coherent real-analytic space $ X $ | ||
+ | the set of classes of isomorphic real-analytic principal fibre bundles with a real structure Lie group $ G $, | ||
+ | admitting complexification, and base $ X $ | ||
+ | is in one-to-one correspondence with the set of classes of isomorphic topological principal fibre bundles with the same structure group $ G $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Tognoli, "Some results in the theory of real analytic spaces" M. Jurchesan (ed.) , ''Espaces Analytiques (Bucharest 1969)'' , Acad. Roumanie (1971) pp. 149–157</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Tognoli, "Some results in the theory of real analytic spaces" M. Jurchesan (ed.) , ''Espaces Analytiques (Bucharest 1969)'' , Acad. Roumanie (1971) pp. 149–157</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Cartan, "Variétés analytiques réelles et variétés analytiques complexes" ''Bull. Soc. Math. France'' , '''85''' (1957) pp. 77–99</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> F. Bruhat, H. Cartan, "Sur la structure des sous-ensembles analytiques réels" ''C.R. Acad. Sci. Paris'' , '''244''' (1957) pp. 988–900</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> F. Bruhat, H. Cartan, "Sur les composantes irréductibles d'un sous-ensemble" ''C.R. Acad. Sci. Paris'' , '''244''' (1957) pp. 1123–1126</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> F. Bruhat, H. Whitney, "Quelques propriétés fondamentales des ensembles analytiques-réels" ''Comm. Math. Helv.'' , '''33''' (1959) pp. 132–160</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R. Narasimhan, "Introduction to the theory of analytic spaces" , ''Lect. notes in math.'' , '''25''' , Springer (1966)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> H. Grauert, R. Remmert, "Theory of Stein spaces" , Springer (1979) (Translated from German)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> H. Cartan, "Variétés analytiques réelles et variétés analytiques complexes" ''Bull. Soc. Math. France'' , '''85''' (1957) pp. 77–99</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> F. Bruhat, H. Cartan, "Sur la structure des sous-ensembles analytiques réels" ''C.R. Acad. Sci. Paris'' , '''244''' (1957) pp. 988–900</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> F. Bruhat, H. Cartan, "Sur les composantes irréductibles d'un sous-ensemble" ''C.R. Acad. Sci. Paris'' , '''244''' (1957) pp. 1123–1126</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> F. Bruhat, H. Whitney, "Quelques propriétés fondamentales des ensembles analytiques-réels" ''Comm. Math. Helv.'' , '''33''' (1959) pp. 132–160</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> R. Narasimhan, "Introduction to the theory of analytic spaces" , ''Lect. notes in math.'' , '''25''' , Springer (1966)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> H. Grauert, R. Remmert, "Theory of Stein spaces" , Springer (1979) (Translated from German)</TD></TR></table> |
Revision as of 08:10, 6 June 2020
An analytic space over the field $ \mathbf R $
of real numbers. Unlike in the case of complex-analytic spaces, the structure sheaves of real-analytic spaces need not be coherent (cf. Coherent sheaf). Real-analytic spaces are said to be coherent if their structure sheaves are coherent. All real-analytic manifolds (i.e. smooth real-analytic spaces) are coherent real-analytic spaces.
Let $ V _ {a} $ be the germ at a point $ a $ of a real-analytic subset of $ \mathbf R ^ {n} $( cf. Analytic set). This defines the germ at $ a $ of a complex-analytic subset $ {\widetilde{V} } _ {a} $ of the space $ \mathbf C ^ {n} $ with the following equivalent properties: 1) $ \widetilde{V} _ {a} $ is the intersection of all germs of complex-analytic sets containing $ V _ {a} $; 2) if $ {\mathcal O} _ {V _ {a} } $ is the analytic algebra of the germ $ V _ {a} $, then $ {\mathcal O} _ {V _ {a} } \otimes \mathbf C $ is the analytic algebra of the germ $ \widetilde{V} _ {a} $. The germ $ \widetilde{V} _ {a} $ is said to be the complexification of the germ $ V _ {a} $, and $ V _ {a} $ is said to be the real part of the germ $ \widetilde{V} _ {a} $. Analogously, for any coherent real-analytic countably-infinite space $ X $ it is possible to construct the complexification $ \widetilde{X} $, which is a complex-analytic space. $ X $ will then have a fundamental system of neighbourhoods in $ \widetilde{X} $ which are Stein spaces (cf. Stein space).
The theory of coherent real-analytic spaces is similar to the theory of complex Stein spaces. Global sections of any coherent analytic sheaf of modules $ F $ on a coherent real-analytic countably-infinite space $ X $ generate modules of germs of its sections at any point of $ X $, and all groups $ H ^ {q} ( X, F ) $ vanish if $ q \geq 1 $.
For any finite-dimensional coherent real-analytic countably-infinite space $ ( X, {\mathcal O} _ {X} ) $ there exists a morphism
$$ f = ( f _ {0} , f _ {1} ): ( X, {\mathcal O} _ {X} ) \rightarrow \ ( \mathbf R ^ {n} , {\mathcal O} _ {\mathbf R ^ {n} } ) $$
such that $ f _ {0} $ is a proper one-to-one mapping of $ X $ into a coherent subspace in $ \mathbf R ^ {n} $, while $ f $ is an imbedding at the smooth points of $ X $. In particular, any (Hausdorff and countably-infinite) real-analytic manifold is isomorphic to a real-analytic submanifold in $ \mathbf R ^ {n} $. For a reduced coherent real-analytic space $ X $ the set of classes of isomorphic real-analytic principal fibre bundles with a real structure Lie group $ G $, admitting complexification, and base $ X $ is in one-to-one correspondence with the set of classes of isomorphic topological principal fibre bundles with the same structure group $ G $.
References
[1] | A. Tognoli, "Some results in the theory of real analytic spaces" M. Jurchesan (ed.) , Espaces Analytiques (Bucharest 1969) , Acad. Roumanie (1971) pp. 149–157 |
Comments
References
[a1] | H. Cartan, "Variétés analytiques réelles et variétés analytiques complexes" Bull. Soc. Math. France , 85 (1957) pp. 77–99 |
[a2] | F. Bruhat, H. Cartan, "Sur la structure des sous-ensembles analytiques réels" C.R. Acad. Sci. Paris , 244 (1957) pp. 988–900 |
[a3] | F. Bruhat, H. Cartan, "Sur les composantes irréductibles d'un sous-ensemble" C.R. Acad. Sci. Paris , 244 (1957) pp. 1123–1126 |
[a4] | F. Bruhat, H. Whitney, "Quelques propriétés fondamentales des ensembles analytiques-réels" Comm. Math. Helv. , 33 (1959) pp. 132–160 |
[a5] | R. Narasimhan, "Introduction to the theory of analytic spaces" , Lect. notes in math. , 25 , Springer (1966) |
[a6] | H. Grauert, R. Remmert, "Theory of Stein spaces" , Springer (1979) (Translated from German) |
Real-analytic space. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Real-analytic_space&oldid=48447