Namespaces
Variants
Actions

Difference between revisions of "Random function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A function of an arbitrary argument <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773301.png" /> (defined on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773302.png" /> of its values, and taking numerical values or, more generally, values in a vector space) whose values are defined in terms of a certain experiment and may vary with the outcome of this experiment according to a given probability distribution. In [[Probability theory|probability theory]], attention centres on numerical (that is, scalar) random functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773303.png" />; a random vector function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773304.png" /> can be regarded as the aggregate of the scalar functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773305.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773306.png" /> ranges over the finite or countable set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773307.png" /> of components of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773308.png" />, that is, as a numerical random function on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r0773309.png" /> of pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733012.png" />.
+
<!--
 +
r0773301.png
 +
$#A+1 = 92 n = 0
 +
$#C+1 = 92 : ~/encyclopedia/old_files/data/R077/R.0707330 Random function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733013.png" /> is finite, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733014.png" /> is a finite set of random variables, and can be regarded as a multi-dimensional (vector) random variable characterized by a multi-dimensional distribution function. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733015.png" /> is infinite, the case mostly studied is that in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733016.png" /> takes numerical (real) values; in this case, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733017.png" /> usually denotes time, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733018.png" /> is called a [[Stochastic process|stochastic process]], or, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733019.png" /> takes only integral values, a [[Random sequence|random sequence]] (or time series). If the values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733020.png" /> are the points of a manifold (such as a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733021.png" />-dimensional Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733022.png" />), then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733023.png" /> is called a [[Random field|random field]].
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The probability distribution of the values of a random function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733024.png" /> defined on an infinite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733025.png" /> is characterized by the aggregate of finite-dimensional probability distributions of sets of random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733026.png" /> corresponding to all finite subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733027.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733028.png" />, that is, the aggregate of corresponding finite-dimensional distribution functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733029.png" />, satisfying the consistency conditions:
+
A function of an arbitrary argument  $  t $(
 +
defined on the set  $  T $
 +
of its values, and taking numerical values or, more generally, values in a vector space) whose values are defined in terms of a certain experiment and may vary with the outcome of this experiment according to a given probability distribution. In [[Probability theory|probability theory]], attention centres on numerical (that is, scalar) random functions  $  X ( t) $;
 +
a random vector function  $  \mathbf X ( t) $
 +
can be regarded as the aggregate of the scalar functions  $  X _  \alpha  ( t) $,
 +
where  $  \alpha $
 +
ranges over the finite or countable set  $  A $
 +
of components of $  \mathbf X $,  
 +
that is, as a numerical random function on the set  $  T _ {1} = T \times A $
 +
of pairs  $  ( t , \alpha ) $,
 +
$  t \in T $,
 +
$  \alpha \in A $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733030.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
When  $  T $
 +
is finite,  $  X ( t) $
 +
is a finite set of random variables, and can be regarded as a multi-dimensional (vector) random variable characterized by a multi-dimensional distribution function. When  $  T $
 +
is infinite, the case mostly studied is that in which  $  t $
 +
takes numerical (real) values; in this case,  $  t $
 +
usually denotes time, and  $  X ( t) $
 +
is called a [[Stochastic process|stochastic process]], or, if  $  t $
 +
takes only integral values, a [[Random sequence|random sequence]] (or time series). If the values of  $  t $
 +
are the points of a manifold (such as a  $  k $-
 +
dimensional Euclidean space  $  \mathbf R  ^ {k} $),
 +
then  $  X ( t) $
 +
is called a [[Random field|random field]].
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733031.png" /></td> </tr></table>
+
The probability distribution of the values of a random function  $  X ( t) $
 +
defined on an infinite set  $  T $
 +
is characterized by the aggregate of finite-dimensional probability distributions of sets of random variables  $  X ( t _ {1} ) \dots X ( t _ {n} ) $
 +
corresponding to all finite subsets  $  \{ t _ {1} \dots t _ {n} \} $
 +
of  $  T $,
 +
that is, the aggregate of corresponding finite-dimensional distribution functions  $  F _ {t _ {1}  \dots t _ {n} } ( x _ {1} \dots x _ {n} ) $,
 +
satisfying the consistency conditions:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733032.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{1 }
 +
F _ {t _ {1}  \dots t _ {n} , t _ {n+} 1 \dots t _ {n+} m } ( x _ {1} \dots x _ {n} , \infty \dots \infty ) =
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733033.png" /> is an arbitrary permutation of the subscripts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733034.png" />. This characterization of the probability distribution of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733035.png" /> is sufficient in all cases when one is only interested in events depending on the values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733036.png" /> on countable subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733037.png" />. But it does not enable one to determine the probability of properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733038.png" /> that depend on its values on a continuous subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733039.png" />, such as the probability of continuity or differentiability, or the probability that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733040.png" /> on a continuous subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733041.png" /> (see [[Separable process|Separable process]]).
+
$$
 +
= \
 +
F _ {t _ {1}  \dots t _ {n} } ( x _ {1} \dots x _ {n} ) ,
 +
$$
  
Random functions can be described more generally in terms of aggregates of random variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733042.png" /> defined on a fixed [[Probability space|probability space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733043.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733044.png" /> is a set of points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733045.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733046.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733047.png" />-algebra of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733048.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733049.png" /> is a given probability measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733050.png" />), one for each point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733051.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733052.png" />. In this approach, a random function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733053.png" /> is regarded as a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733054.png" /> of two variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733055.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733056.png" /> which is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733057.png" />-measurable for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733058.png" /> (that is, for fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733059.png" /> it reduces to a random variable defined on the probability space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733060.png" />). By taking a fixed value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733061.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733062.png" />, one obtains a numerical function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733063.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733064.png" />, called a realization (or sample function or, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733065.png" /> denotes time, a trajectory) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733066.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733067.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733068.png" /> induce a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733069.png" />-algebra of subsets and a probability measure defined on it in the function space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733070.png" /> of realizations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733071.png" />, whose specification can also be regarded as equivalent to that of the random function. The specification of a random function as a probability measure on a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733072.png" />-algebra of subsets of the function space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733073.png" /> of all possible realizations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733074.png" /> can be regarded as a special case of its general specification as a function of two variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733075.png" /> (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733076.png" /> belongs to the probability space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733077.png" /> in which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733078.png" />), that is, elementary events (points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733079.png" /> in the given probability space) are identified at the outset with the realizations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733080.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733081.png" />. On the other hand, it is also possible to show that any other way of specifying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733082.png" /> can be reduced to this form using a special determination of a probability measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733083.png" />. In particular, Kolmogorov's fundamental theorem on consistent distributions (see [[Probability space|Probability space]]) shows that the specification of the aggregate of all possible finite-dimensional distribution functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733084.png" /> satisfying the above consistency conditions (1) and (2) defines a probability measure on the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733085.png" />-algebra of subsets of the function space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733086.png" /> generated by the aggregate of cylindrical sets (cf. [[Cylinder set|Cylinder set]]) of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733087.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733088.png" /> is an arbitrary positive integer and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733089.png" /> is an arbitrary Borel set of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733090.png" />-dimensional space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733091.png" /> of vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077330/r07733092.png" />.
+
$$ \tag{2 }
 +
F _ {t _ {i _ {1}  } \dots t _ {i _ {n}  } }
 +
( x _ {i _ {1}  } \dots x _ {i _ {n}  } ) = F _ {t _ {1}  \dots t _ {n} } ( x _ {1} \dots x _ {n} ) ,
 +
$$
  
For references see [[Stochastic process|Stochastic process]].
+
where  $  i _ {1} \dots i _ {n} $
 +
is an arbitrary permutation of the subscripts  $  1 \dots n $.
 +
This characterization of the probability distribution of  $  X ( t) $
 +
is sufficient in all cases when one is only interested in events depending on the values of  $  X $
 +
on countable subsets of  $  T $.
 +
But it does not enable one to determine the probability of properties of  $  X $
 +
that depend on its values on a continuous subset of  $  T $,
 +
such as the probability of continuity or differentiability, or the probability that  $  X ( t) < a $
 +
on a continuous subset of  $  T $(
 +
see [[Separable process|Separable process]]).
  
 +
Random functions can be described more generally in terms of aggregates of random variables  $  X = X ( \omega ) $
 +
defined on a fixed [[Probability space|probability space]]  $  ( \Omega , {\mathcal A} , {\mathsf P} ) $(
 +
where  $  \Omega $
 +
is a set of points  $  \omega $,
 +
$  {\mathcal A} $
 +
is a  $  \sigma $-
 +
algebra of subsets of  $  \Omega $
 +
and  $  {\mathsf P} $
 +
is a given probability measure on  $  {\mathcal A} $),
 +
one for each point  $  t $
 +
of  $  T $.
 +
In this approach, a random function on  $  T $
 +
is regarded as a function  $  X ( t , \omega ) $
 +
of two variables  $  t \in T $
 +
and  $  \omega \in \Omega $
 +
which is  $  {\mathcal A} $-
 +
measurable for every  $  t $(
 +
that is, for fixed  $  t $
 +
it reduces to a random variable defined on the probability space  $  ( \Omega , {\mathcal A} , {\mathsf P} ) $).
 +
By taking a fixed value  $  \omega _ {0} $
 +
of  $  \omega $,
 +
one obtains a numerical function  $  X ( t , \omega _ {0} ) = x ( t) $
 +
on  $  T $,
 +
called a realization (or sample function or, when  $  t $
 +
denotes time, a trajectory) of  $  X ( t) $;
 +
$  {\mathcal A} $
 +
and  $  {\mathsf P} $
 +
induce a  $  \sigma $-
 +
algebra of subsets and a probability measure defined on it in the function space  $  \mathbf R  ^ {T} = \{ {x ( t) } : {t \in T } \} $
 +
of realizations  $  x ( t) $,
 +
whose specification can also be regarded as equivalent to that of the random function. The specification of a random function as a probability measure on a  $  \sigma $-
 +
algebra of subsets of the function space  $  \mathbf R  ^ {T} $
 +
of all possible realizations  $  x ( t) $
 +
can be regarded as a special case of its general specification as a function of two variables  $  X ( t , \omega ) $(
 +
where  $  \omega $
 +
belongs to the probability space  $  ( \Omega , {\mathcal A} , {\mathsf P} ) $
 +
in which  $  \Omega = \mathbf R  ^ {T} $),
 +
that is, elementary events (points  $  \omega $
 +
in the given probability space) are identified at the outset with the realizations  $  x ( t) $
 +
of  $  X ( t) $.
 +
On the other hand, it is also possible to show that any other way of specifying  $  X ( t) $
 +
can be reduced to this form using a special determination of a probability measure on  $  \mathbf R  ^ {T} $.
 +
In particular, Kolmogorov's fundamental theorem on consistent distributions (see [[Probability space|Probability space]]) shows that the specification of the aggregate of all possible finite-dimensional distribution functions  $  F _ {t _ {1}  \dots t _ {n} } ( x _ {1} \dots x _ {n} ) $
 +
satisfying the above consistency conditions (1) and (2) defines a probability measure on the  $  \sigma $-
 +
algebra of subsets of the function space  $  \mathbf R  ^ {T} = \{ {x ( t) } : {t \in T } \} $
 +
generated by the aggregate of cylindrical sets (cf. [[Cylinder set|Cylinder set]]) of the form  $  \{ {x ( t) } : {[ x ( t _ {1} ) \dots x ( t _ {n} ) ] \in B  ^ {n} } \} $,
 +
where  $  n $
 +
is an arbitrary positive integer and  $  B  ^ {n} $
 +
is an arbitrary Borel set of the  $  n $-
 +
dimensional space  $  \mathbf R  ^ {n} $
 +
of vectors  $  [ x ( t _ {1} ) \dots x ( t _ {n} ) ] $.
  
 +
For references see [[Stochastic process|Stochastic process]].
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.L. Doob,  "Stochastic processes" , Wiley  (1953)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Loève,  "Probability theory" , Springer  (1977)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I.I. [I.I. Gikhman] Gihman,  A.V. [A.V. Skorokhod] Skorohod,  "The theory of stochastic processes" , '''1''' , Springer  (1974)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  A. Blanc-Lapierre,  R. Fortet,  "Theory of random functions" , '''1–2''' , Gordon &amp; Breach  (1965)  (Translated from French)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.L. Doob,  "Stochastic processes" , Wiley  (1953)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  M. Loève,  "Probability theory" , Springer  (1977)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I.I. [I.I. Gikhman] Gihman,  A.V. [A.V. Skorokhod] Skorohod,  "The theory of stochastic processes" , '''1''' , Springer  (1974)  (Translated from Russian)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  A. Blanc-Lapierre,  R. Fortet,  "Theory of random functions" , '''1–2''' , Gordon &amp; Breach  (1965)  (Translated from French)</TD></TR></table>

Latest revision as of 08:09, 6 June 2020


A function of an arbitrary argument $ t $( defined on the set $ T $ of its values, and taking numerical values or, more generally, values in a vector space) whose values are defined in terms of a certain experiment and may vary with the outcome of this experiment according to a given probability distribution. In probability theory, attention centres on numerical (that is, scalar) random functions $ X ( t) $; a random vector function $ \mathbf X ( t) $ can be regarded as the aggregate of the scalar functions $ X _ \alpha ( t) $, where $ \alpha $ ranges over the finite or countable set $ A $ of components of $ \mathbf X $, that is, as a numerical random function on the set $ T _ {1} = T \times A $ of pairs $ ( t , \alpha ) $, $ t \in T $, $ \alpha \in A $.

When $ T $ is finite, $ X ( t) $ is a finite set of random variables, and can be regarded as a multi-dimensional (vector) random variable characterized by a multi-dimensional distribution function. When $ T $ is infinite, the case mostly studied is that in which $ t $ takes numerical (real) values; in this case, $ t $ usually denotes time, and $ X ( t) $ is called a stochastic process, or, if $ t $ takes only integral values, a random sequence (or time series). If the values of $ t $ are the points of a manifold (such as a $ k $- dimensional Euclidean space $ \mathbf R ^ {k} $), then $ X ( t) $ is called a random field.

The probability distribution of the values of a random function $ X ( t) $ defined on an infinite set $ T $ is characterized by the aggregate of finite-dimensional probability distributions of sets of random variables $ X ( t _ {1} ) \dots X ( t _ {n} ) $ corresponding to all finite subsets $ \{ t _ {1} \dots t _ {n} \} $ of $ T $, that is, the aggregate of corresponding finite-dimensional distribution functions $ F _ {t _ {1} \dots t _ {n} } ( x _ {1} \dots x _ {n} ) $, satisfying the consistency conditions:

$$ \tag{1 } F _ {t _ {1} \dots t _ {n} , t _ {n+} 1 \dots t _ {n+} m } ( x _ {1} \dots x _ {n} , \infty \dots \infty ) = $$

$$ = \ F _ {t _ {1} \dots t _ {n} } ( x _ {1} \dots x _ {n} ) , $$

$$ \tag{2 } F _ {t _ {i _ {1} } \dots t _ {i _ {n} } } ( x _ {i _ {1} } \dots x _ {i _ {n} } ) = F _ {t _ {1} \dots t _ {n} } ( x _ {1} \dots x _ {n} ) , $$

where $ i _ {1} \dots i _ {n} $ is an arbitrary permutation of the subscripts $ 1 \dots n $. This characterization of the probability distribution of $ X ( t) $ is sufficient in all cases when one is only interested in events depending on the values of $ X $ on countable subsets of $ T $. But it does not enable one to determine the probability of properties of $ X $ that depend on its values on a continuous subset of $ T $, such as the probability of continuity or differentiability, or the probability that $ X ( t) < a $ on a continuous subset of $ T $( see Separable process).

Random functions can be described more generally in terms of aggregates of random variables $ X = X ( \omega ) $ defined on a fixed probability space $ ( \Omega , {\mathcal A} , {\mathsf P} ) $( where $ \Omega $ is a set of points $ \omega $, $ {\mathcal A} $ is a $ \sigma $- algebra of subsets of $ \Omega $ and $ {\mathsf P} $ is a given probability measure on $ {\mathcal A} $), one for each point $ t $ of $ T $. In this approach, a random function on $ T $ is regarded as a function $ X ( t , \omega ) $ of two variables $ t \in T $ and $ \omega \in \Omega $ which is $ {\mathcal A} $- measurable for every $ t $( that is, for fixed $ t $ it reduces to a random variable defined on the probability space $ ( \Omega , {\mathcal A} , {\mathsf P} ) $). By taking a fixed value $ \omega _ {0} $ of $ \omega $, one obtains a numerical function $ X ( t , \omega _ {0} ) = x ( t) $ on $ T $, called a realization (or sample function or, when $ t $ denotes time, a trajectory) of $ X ( t) $; $ {\mathcal A} $ and $ {\mathsf P} $ induce a $ \sigma $- algebra of subsets and a probability measure defined on it in the function space $ \mathbf R ^ {T} = \{ {x ( t) } : {t \in T } \} $ of realizations $ x ( t) $, whose specification can also be regarded as equivalent to that of the random function. The specification of a random function as a probability measure on a $ \sigma $- algebra of subsets of the function space $ \mathbf R ^ {T} $ of all possible realizations $ x ( t) $ can be regarded as a special case of its general specification as a function of two variables $ X ( t , \omega ) $( where $ \omega $ belongs to the probability space $ ( \Omega , {\mathcal A} , {\mathsf P} ) $ in which $ \Omega = \mathbf R ^ {T} $), that is, elementary events (points $ \omega $ in the given probability space) are identified at the outset with the realizations $ x ( t) $ of $ X ( t) $. On the other hand, it is also possible to show that any other way of specifying $ X ( t) $ can be reduced to this form using a special determination of a probability measure on $ \mathbf R ^ {T} $. In particular, Kolmogorov's fundamental theorem on consistent distributions (see Probability space) shows that the specification of the aggregate of all possible finite-dimensional distribution functions $ F _ {t _ {1} \dots t _ {n} } ( x _ {1} \dots x _ {n} ) $ satisfying the above consistency conditions (1) and (2) defines a probability measure on the $ \sigma $- algebra of subsets of the function space $ \mathbf R ^ {T} = \{ {x ( t) } : {t \in T } \} $ generated by the aggregate of cylindrical sets (cf. Cylinder set) of the form $ \{ {x ( t) } : {[ x ( t _ {1} ) \dots x ( t _ {n} ) ] \in B ^ {n} } \} $, where $ n $ is an arbitrary positive integer and $ B ^ {n} $ is an arbitrary Borel set of the $ n $- dimensional space $ \mathbf R ^ {n} $ of vectors $ [ x ( t _ {1} ) \dots x ( t _ {n} ) ] $.

For references see Stochastic process.

Comments

References

[a1] J.L. Doob, "Stochastic processes" , Wiley (1953)
[a2] M. Loève, "Probability theory" , Springer (1977)
[a3] I.I. [I.I. Gikhman] Gihman, A.V. [A.V. Skorokhod] Skorohod, "The theory of stochastic processes" , 1 , Springer (1974) (Translated from Russian)
[a4] A. Blanc-Lapierre, R. Fortet, "Theory of random functions" , 1–2 , Gordon & Breach (1965) (Translated from French)
How to Cite This Entry:
Random function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Random_function&oldid=48427
This article was adapted from an original article by A.M. Yaglom (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article