Difference between revisions of "Ramified prime ideal"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0772301.png | ||
+ | $#A+1 = 38 n = 0 | ||
+ | $#C+1 = 38 : ~/encyclopedia/old_files/data/R077/R.0707230 Ramified prime ideal | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | where | + | A [[Prime ideal|prime ideal]] in a [[Dedekind ring|Dedekind ring]] $ A $ |
+ | which divides the discriminant of a finite [[Separable extension|separable extension]] $ K/k $, | ||
+ | where $ k $ | ||
+ | is the field of fractions of $ A $. | ||
+ | Such ideals are the only ideals that are ramified in the extension $ K/k $. | ||
+ | A prime ideal $ \mathfrak p $ | ||
+ | of a ring $ A $ | ||
+ | is ramified in $ K/k $ | ||
+ | if the following product representation holds in the integral closure $ B $ | ||
+ | of $ A $ | ||
+ | in the field $ K $: | ||
− | + | $$ | |
+ | \mathfrak p B = \ | ||
+ | \mathfrak P _ {1} ^ {e _ {1} } \dots | ||
+ | \mathfrak P _ {s} ^ {e _ {s} } , | ||
+ | $$ | ||
− | + | where $ \mathfrak P _ {1} \dots \mathfrak P _ {s} $ | |
+ | are prime ideals in $ B $ | ||
+ | and at least one of the numbers $ e _ {i} $ | ||
+ | is greater than 1. The number $ e _ {i} $ | ||
+ | is called the ramification index of $ \mathfrak P _ {i} $ | ||
+ | over $ \mathfrak p $. | ||
− | + | If $ K/k $ | |
+ | is a [[Galois extension|Galois extension]] with Galois group $ G ( K/k) $, | ||
+ | then $ e _ {1} = \dots = e _ {s} $ | ||
+ | and $ e _ {i} $ | ||
+ | is precisely the order of the inertia subgroup $ T ( \mathfrak P _ {i} ) $ | ||
+ | of $ \mathfrak P _ {i} $ | ||
+ | in $ G ( K/k) $: | ||
− | + | $$ | |
+ | T ( \mathfrak P _ {i} ) = \ | ||
+ | \{ {\sigma \in G ( K/k) } : { | ||
+ | \sigma a - a \in \mathfrak P _ {i} \ | ||
+ | \textrm{ for } \textrm{ all } \ | ||
+ | a \in B } \} | ||
+ | . | ||
+ | $$ | ||
− | + | Other, more refined, characteristics of the ramification are given by the higher ramification groups $ T ( \mathfrak P _ {i} ) _ {n} \subset T ( \mathfrak P _ {i} ) $, | |
+ | $ n = 1, 2 \dots $ | ||
+ | defined as follows: | ||
+ | |||
+ | $$ | ||
+ | T ( \mathfrak P _ {i} ) _ {n} = \ | ||
+ | \{ {\sigma \in G ( K/k) } : { | ||
+ | \sigma a - a \in \mathfrak P _ {i} ^ {n + 1 } \ | ||
+ | \textrm{ for } \textrm{ all } a \in B } \} | ||
+ | . | ||
+ | $$ | ||
+ | |||
+ | Let $ A = \mathbf Z $; | ||
+ | by Minkowski's theorem, for any finite extension of the field $ \mathbf Q $ | ||
+ | of rational numbers there exists a ramified prime ideal. This is not true for arbitrary algebraic number fields: If the field $ k $ | ||
+ | has class number $ h > 1 $, | ||
+ | i.e. has a non-trivial ideal class group, then there exist unramified extensions over $ k $, | ||
+ | i.e. extensions having no ramified prime ideal. An example of such an extension is the Hilbert class field of the field $ k $; | ||
+ | e.g., the field $ \mathbf Q ( \sqrt 5 , \sqrt - 5 ) $ | ||
+ | is the Hilbert class field of $ \mathbf Q ( \sqrt - 5 ) $ | ||
+ | and is unramified over $ \mathbf Q ( \sqrt - 5 ) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1987) (Translated from Russian) (German translation: Birkhäuser, 1966)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1986)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lang, "Algebraic number theory" , Addison-Wesley (1970)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1987) (Translated from Russian) (German translation: Birkhäuser, 1966)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.W.S. Cassels (ed.) A. Fröhlich (ed.) , ''Algebraic number theory'' , Acad. Press (1986)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lang, "Algebraic number theory" , Addison-Wesley (1970)</TD></TR></table> |
Latest revision as of 08:09, 6 June 2020
A prime ideal in a Dedekind ring $ A $
which divides the discriminant of a finite separable extension $ K/k $,
where $ k $
is the field of fractions of $ A $.
Such ideals are the only ideals that are ramified in the extension $ K/k $.
A prime ideal $ \mathfrak p $
of a ring $ A $
is ramified in $ K/k $
if the following product representation holds in the integral closure $ B $
of $ A $
in the field $ K $:
$$ \mathfrak p B = \ \mathfrak P _ {1} ^ {e _ {1} } \dots \mathfrak P _ {s} ^ {e _ {s} } , $$
where $ \mathfrak P _ {1} \dots \mathfrak P _ {s} $ are prime ideals in $ B $ and at least one of the numbers $ e _ {i} $ is greater than 1. The number $ e _ {i} $ is called the ramification index of $ \mathfrak P _ {i} $ over $ \mathfrak p $.
If $ K/k $ is a Galois extension with Galois group $ G ( K/k) $, then $ e _ {1} = \dots = e _ {s} $ and $ e _ {i} $ is precisely the order of the inertia subgroup $ T ( \mathfrak P _ {i} ) $ of $ \mathfrak P _ {i} $ in $ G ( K/k) $:
$$ T ( \mathfrak P _ {i} ) = \ \{ {\sigma \in G ( K/k) } : { \sigma a - a \in \mathfrak P _ {i} \ \textrm{ for } \textrm{ all } \ a \in B } \} . $$
Other, more refined, characteristics of the ramification are given by the higher ramification groups $ T ( \mathfrak P _ {i} ) _ {n} \subset T ( \mathfrak P _ {i} ) $, $ n = 1, 2 \dots $ defined as follows:
$$ T ( \mathfrak P _ {i} ) _ {n} = \ \{ {\sigma \in G ( K/k) } : { \sigma a - a \in \mathfrak P _ {i} ^ {n + 1 } \ \textrm{ for } \textrm{ all } a \in B } \} . $$
Let $ A = \mathbf Z $; by Minkowski's theorem, for any finite extension of the field $ \mathbf Q $ of rational numbers there exists a ramified prime ideal. This is not true for arbitrary algebraic number fields: If the field $ k $ has class number $ h > 1 $, i.e. has a non-trivial ideal class group, then there exist unramified extensions over $ k $, i.e. extensions having no ramified prime ideal. An example of such an extension is the Hilbert class field of the field $ k $; e.g., the field $ \mathbf Q ( \sqrt 5 , \sqrt - 5 ) $ is the Hilbert class field of $ \mathbf Q ( \sqrt - 5 ) $ and is unramified over $ \mathbf Q ( \sqrt - 5 ) $.
References
[1] | Z.I. Borevich, I.R. Shafarevich, "Number theory" , Acad. Press (1987) (Translated from Russian) (German translation: Birkhäuser, 1966) |
[2] | J.W.S. Cassels (ed.) A. Fröhlich (ed.) , Algebraic number theory , Acad. Press (1986) |
[3] | S. Lang, "Algebraic number theory" , Addison-Wesley (1970) |
Ramified prime ideal. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ramified_prime_ideal&oldid=48419