|
|
Line 1: |
Line 1: |
− | A projective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q0764701.png" />-space whose projective metric is defined by an [[Absolute|absolute]] consisting of an imaginary cone (the absolute cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q0764702.png" />) with an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q0764703.png" />-vertex (the absolute plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q0764704.png" />) together with an imaginary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q0764705.png" />-quadric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q0764706.png" /> on this <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q0764707.png" />-plane (the absolute quadric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q0764708.png" />); it is denoted by the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q0764709.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647010.png" />. A quasi-elliptic space is of more general projective type in comparison with a Euclidean space and a [[Co-Euclidean space|co-Euclidean space]]; the metrics of the latter are obtained from those of the former. A quasi-elliptic space is a particular case of a [[Semi-elliptic space|semi-elliptic space]]. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647011.png" />, the absolute cone is a pair of coincident <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647012.png" />-planes coinciding with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647013.png" />-absolute plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647014.png" />, while the absolute coincides with the absolute of Euclidean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647015.png" />-space. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647016.png" />, the cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647017.png" /> is a cone with a point vertex and the absolute in this case is the same as that of the co-Euclidean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647018.png" />-space. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647019.png" />, the cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647020.png" /> is a pair of imaginary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647021.png" />-planes. In particular, the cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647022.png" /> of the quasi-elliptic three-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647023.png" /> is a pair of imaginary two-planes, the line (the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647024.png" />-plane) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647025.png" /> is the real line of their intersection, while the quadric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647026.png" /> is a pair of imaginary points on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647027.png" />.
| + | <!-- |
| + | q0764701.png |
| + | $#A+1 = 81 n = 0 |
| + | $#C+1 = 81 : ~/encyclopedia/old_files/data/Q076/Q.0706470 Quasi\AAhelliptic space |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The distance <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647028.png" /> between two points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647029.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647030.png" /> is defined in case the line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647031.png" /> does not intersect the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647032.png" />-plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647033.png" /> by the relation
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647034.png" /></td> </tr></table>
| + | A projective $ n $- |
| + | space whose projective metric is defined by an [[Absolute|absolute]] consisting of an imaginary cone (the absolute cone $ Q _ {0} $) |
| + | with an $ ( n- m - 1 ) $- |
| + | vertex (the absolute plane $ T _ {0} $) |
| + | together with an imaginary $ ( n - m - 2 ) $- |
| + | quadric $ Q _ {1} $ |
| + | on this $ ( n- m- 1) $- |
| + | plane (the absolute quadric $ Q _ {1} $); |
| + | it is denoted by the symbol $ S _ {n} ^ {m} $, |
| + | $ m < n $. |
| + | A quasi-elliptic space is of more general projective type in comparison with a Euclidean space and a [[Co-Euclidean space|co-Euclidean space]]; the metrics of the latter are obtained from those of the former. A quasi-elliptic space is a particular case of a [[Semi-elliptic space|semi-elliptic space]]. For $ m = 0 $, |
| + | the absolute cone is a pair of coincident $ ( n- 1) $- |
| + | planes coinciding with the $ ( n- 1) $- |
| + | absolute plane $ T _ {0} $, |
| + | while the absolute coincides with the absolute of Euclidean $ n $- |
| + | space. For $ m= 1 $, |
| + | the cone $ Q _ {0} $ |
| + | is a cone with a point vertex and the absolute in this case is the same as that of the co-Euclidean $ n $- |
| + | space. When $ m = 1 $, |
| + | the cone $ Q _ {0} $ |
| + | is a pair of imaginary $ ( n - 1 ) $- |
| + | planes. In particular, the cone $ Q _ {0} $ |
| + | of the quasi-elliptic three-space $ S _ {3} ^ {1} $ |
| + | is a pair of imaginary two-planes, the line (the $ 1 $- |
| + | plane) $ T _ {0} $ |
| + | is the real line of their intersection, while the quadric $ Q _ {1} $ |
| + | is a pair of imaginary points on $ T _ {0} $. |
| + | |
| + | The distance $ \delta $ |
| + | between two points $ X $ |
| + | and $ Y $ |
| + | is defined in case the line $ X Y $ |
| + | does not intersect the $ ( n - m - 1 ) $- |
| + | plane $ T _ {0} $ |
| + | by the relation |
| + | |
| + | $$ |
| + | \cos ^ {2} |
| + | \frac \delta \rho |
| + | = \ |
| + | |
| + | \frac{( \mathbf x ^ {0} E _ {0} \mathbf y ^ {0} ) ^ {2} }{( \mathbf x ^ {0} E _ {0} \mathbf x ^ {0} ) |
| + | ( \mathbf y ^ {0} E _ {0} \mathbf y ^ {0} ) } |
| + | , |
| + | $$ |
| | | |
| where | | where |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647035.png" /></td> </tr></table>
| + | $$ |
| + | \mathbf x ^ {0} = ( x ^ {a} , a \leq m ) ,\ \ |
| + | \mathbf y ^ {0} = ( y ^ {b} , b \leq m ) |
| + | $$ |
| | | |
− | are the vectors of the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647038.png" /> is the linear operator defining the scalar product in the space of these vectors and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647039.png" /> is a real number; in case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647040.png" /> intersects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647041.png" />, the distance <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647042.png" /> between these points is defined by means of the distance between the vectors of the points <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647043.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647044.png" />: | + | are the vectors of the points $ X $ |
| + | and $ Y $, |
| + | $ E _ {0} $ |
| + | is the linear operator defining the scalar product in the space of these vectors and $ \rho $ |
| + | is a real number; in case $ X Y $ |
| + | intersects $ T _ {0} $, |
| + | the distance $ d $ |
| + | between these points is defined by means of the distance between the vectors of the points $ X $ |
| + | and $ Y $: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647045.png" /></td> </tr></table>
| + | $$ |
| + | \mathbf x = \mathbf y ^ {1} - \mathbf x ^ {1} , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647046.png" /></td> </tr></table>
| + | $$ |
| + | \mathbf x ^ {1} = ( x ^ {a} , a > m ) ,\ \mathbf y ^ {1} = ( y ^ {b} , b > m ) , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647047.png" /></td> </tr></table>
| + | $$ |
| + | d ^ {2} = \mathbf a E _ {1} \mathbf a , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647048.png" /> is the linear operator defining the scalar product in the space of these vectors. | + | where $ E _ {1} $ |
| + | is the linear operator defining the scalar product in the space of these vectors. |
| | | |
− | The angle between two planes whose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647049.png" />-plane of intersection does not intersect the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647050.png" />-plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647051.png" /> is defined as the (normalized) distance between the corresponding points in the dual quasi-elliptic space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647052.png" />, in which the coordinates are numerically equal or proportional to the projective coordinates of the planes in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647053.png" />. If the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647054.png" />-plane of intersection of two given planes intersects the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647055.png" />-plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647056.png" />, then the angle between the planes is in this case again defined by the numerical distance. When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647057.png" /> the angles between the planes are the angles between the lines. | + | The angle between two planes whose $ ( n- 2 ) $- |
| + | plane of intersection does not intersect the $ ( n - m - 1 ) $- |
| + | plane $ T _ {0} $ |
| + | is defined as the (normalized) distance between the corresponding points in the dual quasi-elliptic space $ S _ {n} ^ {n-} m- 1 $, |
| + | in which the coordinates are numerically equal or proportional to the projective coordinates of the planes in $ S _ {n} ^ {m} $. |
| + | If the $ ( n - 2 ) $- |
| + | plane of intersection of two given planes intersects the $ ( n- m- 1 ) $- |
| + | plane $ T _ {0} $, |
| + | then the angle between the planes is in this case again defined by the numerical distance. When $ n = 2 $ |
| + | the angles between the planes are the angles between the lines. |
| | | |
− | The motions of the quasi-elliptic space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647058.png" /> are the collineations of this space that take the cone <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647059.png" /> into the plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647060.png" /> and the quadric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647061.png" /> into itself. The group of motions is a Lie group and the motions are described by orthogonal operators. In the quasi-elliptic space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647062.png" />, which is self-dual, co-motions are defined as the correlations that take each pair of points into two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647063.png" />-planes the angle between which is proportional to the distance between the points, and each pair of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647064.png" />-planes into two points the distance between which is proportional to the angle between the planes. The motions and co-motions of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647065.png" /> form a group, which is a Lie group. The geometry of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647066.png" />-plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647067.png" /> is Euclidean geometry, while the geometry of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647068.png" />-plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647069.png" /> is the same as that of the co-Euclidean plane. | + | The motions of the quasi-elliptic space $ S _ {n} ^ {m} $ |
| + | are the collineations of this space that take the cone $ Q _ {0} $ |
| + | into the plane $ T _ {0} $ |
| + | and the quadric $ Q _ {1} $ |
| + | into itself. The group of motions is a Lie group and the motions are described by orthogonal operators. In the quasi-elliptic space $ S _ {2m+} 1 ^ {m} $, |
| + | which is self-dual, co-motions are defined as the correlations that take each pair of points into two $ 2m $- |
| + | planes the angle between which is proportional to the distance between the points, and each pair of $ 2 m $- |
| + | planes into two points the distance between which is proportional to the angle between the planes. The motions and co-motions of $ S _ {2m+} 1 ^ {m} $ |
| + | form a group, which is a Lie group. The geometry of the $ 2 $- |
| + | plane $ S _ {2} ^ {0} $ |
| + | is Euclidean geometry, while the geometry of the $ 2 $- |
| + | plane $ S _ {2} ^ {1} $ |
| + | is the same as that of the co-Euclidean plane. |
| | | |
− | The geometry of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647070.png" />-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647071.png" /> is defined by an elliptic projective metric on lines that is co-Euclidean on planes and Euclidean in bundles of planes. The geometry of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647072.png" />-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647073.png" /> is Euclidean, while the geometry of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647074.png" />-space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647075.png" /> is the same as that of the co-Euclidean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647076.png" />-space. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647077.png" /> with radius of curvature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647078.png" /> is isometric to the connected group of motions of the Euclidean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647079.png" />-space with a specially introduced metric. The connected group of motions of the quasi-Euclidean space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647080.png" /> is isomorphic to the direct product of two connected groups of motions of the Euclidean <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/q/q076/q076470/q07647081.png" />-plane. | + | The geometry of the $ 3 $- |
| + | space $ S _ {3} ^ {1} $ |
| + | is defined by an elliptic projective metric on lines that is co-Euclidean on planes and Euclidean in bundles of planes. The geometry of the $ 3 $- |
| + | space $ S _ {3} ^ {0} $ |
| + | is Euclidean, while the geometry of the $ 3 $- |
| + | space $ S _ {3} ^ {2} $ |
| + | is the same as that of the co-Euclidean $ 3 $- |
| + | space. The space $ S _ {3} ^ {1} $ |
| + | with radius of curvature $ 1 / 2 $ |
| + | is isometric to the connected group of motions of the Euclidean $ 2 $- |
| + | space with a specially introduced metric. The connected group of motions of the quasi-Euclidean space $ S _ {3} ^ {1} $ |
| + | is isomorphic to the direct product of two connected groups of motions of the Euclidean $ 2 $- |
| + | plane. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− |
| |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B.A. [B.A. Rozenfel'd] Rosenfel'd, "A history of non-euclidean geometry" , Springer (1988) (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> O. Giering, "Vorlesungen über höhere Geometrie" , Vieweg (1982)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> B.A. [B.A. Rozenfel'd] Rosenfel'd, "A history of non-euclidean geometry" , Springer (1988) (Translated from Russian)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> O. Giering, "Vorlesungen über höhere Geometrie" , Vieweg (1982)</TD></TR></table> |
A projective $ n $-
space whose projective metric is defined by an absolute consisting of an imaginary cone (the absolute cone $ Q _ {0} $)
with an $ ( n- m - 1 ) $-
vertex (the absolute plane $ T _ {0} $)
together with an imaginary $ ( n - m - 2 ) $-
quadric $ Q _ {1} $
on this $ ( n- m- 1) $-
plane (the absolute quadric $ Q _ {1} $);
it is denoted by the symbol $ S _ {n} ^ {m} $,
$ m < n $.
A quasi-elliptic space is of more general projective type in comparison with a Euclidean space and a co-Euclidean space; the metrics of the latter are obtained from those of the former. A quasi-elliptic space is a particular case of a semi-elliptic space. For $ m = 0 $,
the absolute cone is a pair of coincident $ ( n- 1) $-
planes coinciding with the $ ( n- 1) $-
absolute plane $ T _ {0} $,
while the absolute coincides with the absolute of Euclidean $ n $-
space. For $ m= 1 $,
the cone $ Q _ {0} $
is a cone with a point vertex and the absolute in this case is the same as that of the co-Euclidean $ n $-
space. When $ m = 1 $,
the cone $ Q _ {0} $
is a pair of imaginary $ ( n - 1 ) $-
planes. In particular, the cone $ Q _ {0} $
of the quasi-elliptic three-space $ S _ {3} ^ {1} $
is a pair of imaginary two-planes, the line (the $ 1 $-
plane) $ T _ {0} $
is the real line of their intersection, while the quadric $ Q _ {1} $
is a pair of imaginary points on $ T _ {0} $.
The distance $ \delta $
between two points $ X $
and $ Y $
is defined in case the line $ X Y $
does not intersect the $ ( n - m - 1 ) $-
plane $ T _ {0} $
by the relation
$$
\cos ^ {2}
\frac \delta \rho
= \
\frac{( \mathbf x ^ {0} E _ {0} \mathbf y ^ {0} ) ^ {2} }{( \mathbf x ^ {0} E _ {0} \mathbf x ^ {0} )
( \mathbf y ^ {0} E _ {0} \mathbf y ^ {0} ) }
,
$$
where
$$
\mathbf x ^ {0} = ( x ^ {a} , a \leq m ) ,\ \
\mathbf y ^ {0} = ( y ^ {b} , b \leq m )
$$
are the vectors of the points $ X $
and $ Y $,
$ E _ {0} $
is the linear operator defining the scalar product in the space of these vectors and $ \rho $
is a real number; in case $ X Y $
intersects $ T _ {0} $,
the distance $ d $
between these points is defined by means of the distance between the vectors of the points $ X $
and $ Y $:
$$
\mathbf x = \mathbf y ^ {1} - \mathbf x ^ {1} ,
$$
$$
\mathbf x ^ {1} = ( x ^ {a} , a > m ) ,\ \mathbf y ^ {1} = ( y ^ {b} , b > m ) ,
$$
$$
d ^ {2} = \mathbf a E _ {1} \mathbf a ,
$$
where $ E _ {1} $
is the linear operator defining the scalar product in the space of these vectors.
The angle between two planes whose $ ( n- 2 ) $-
plane of intersection does not intersect the $ ( n - m - 1 ) $-
plane $ T _ {0} $
is defined as the (normalized) distance between the corresponding points in the dual quasi-elliptic space $ S _ {n} ^ {n-} m- 1 $,
in which the coordinates are numerically equal or proportional to the projective coordinates of the planes in $ S _ {n} ^ {m} $.
If the $ ( n - 2 ) $-
plane of intersection of two given planes intersects the $ ( n- m- 1 ) $-
plane $ T _ {0} $,
then the angle between the planes is in this case again defined by the numerical distance. When $ n = 2 $
the angles between the planes are the angles between the lines.
The motions of the quasi-elliptic space $ S _ {n} ^ {m} $
are the collineations of this space that take the cone $ Q _ {0} $
into the plane $ T _ {0} $
and the quadric $ Q _ {1} $
into itself. The group of motions is a Lie group and the motions are described by orthogonal operators. In the quasi-elliptic space $ S _ {2m+} 1 ^ {m} $,
which is self-dual, co-motions are defined as the correlations that take each pair of points into two $ 2m $-
planes the angle between which is proportional to the distance between the points, and each pair of $ 2 m $-
planes into two points the distance between which is proportional to the angle between the planes. The motions and co-motions of $ S _ {2m+} 1 ^ {m} $
form a group, which is a Lie group. The geometry of the $ 2 $-
plane $ S _ {2} ^ {0} $
is Euclidean geometry, while the geometry of the $ 2 $-
plane $ S _ {2} ^ {1} $
is the same as that of the co-Euclidean plane.
The geometry of the $ 3 $-
space $ S _ {3} ^ {1} $
is defined by an elliptic projective metric on lines that is co-Euclidean on planes and Euclidean in bundles of planes. The geometry of the $ 3 $-
space $ S _ {3} ^ {0} $
is Euclidean, while the geometry of the $ 3 $-
space $ S _ {3} ^ {2} $
is the same as that of the co-Euclidean $ 3 $-
space. The space $ S _ {3} ^ {1} $
with radius of curvature $ 1 / 2 $
is isometric to the connected group of motions of the Euclidean $ 2 $-
space with a specially introduced metric. The connected group of motions of the quasi-Euclidean space $ S _ {3} ^ {1} $
is isomorphic to the direct product of two connected groups of motions of the Euclidean $ 2 $-
plane.
References
[1] | B.A. Rozenfel'd, "Non-Euclidean spaces" , Moscow (1969) (In Russian) |
References
[a1] | B.A. [B.A. Rozenfel'd] Rosenfel'd, "A history of non-euclidean geometry" , Springer (1988) (Translated from Russian) |
[a2] | O. Giering, "Vorlesungen über höhere Geometrie" , Vieweg (1982) |