Difference between revisions of "Quasi-coherent sheaf"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | q0764101.png | ||
+ | $#A+1 = 20 n = 0 | ||
+ | $#C+1 = 20 : ~/encyclopedia/old_files/data/Q076/Q.0706410 Quasi\AAhcoherent sheaf | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A [[Sheaf|sheaf]] of modules locally defined by generators and relations. More precisely, let $ X $ | |
+ | be a topological space and let $ {\mathcal A} $ | ||
+ | be a sheaf of rings on $ X $; | ||
+ | a sheaf $ {\mathcal F} $ | ||
+ | of $ {\mathcal A} $- | ||
+ | modules is called quasi-coherent if for any point $ x \in X $ | ||
+ | there is an open neighbourhood $ U $ | ||
+ | and an exact sequence of sheaves of $ ( {\mathcal A} \mid _ {U} ) $- | ||
+ | modules | ||
− | + | $$ | |
+ | {\mathcal A} | _ {U} ^ {(} I) \rightarrow {\mathcal A} | _ {U} ^ {(} J) \rightarrow \ | ||
+ | {\mathcal F} \mid _ {U} \rightarrow 0 , | ||
+ | $$ | ||
+ | where $ I $ | ||
+ | and $ J $ | ||
+ | are certain sets, $ \mid _ {U} $ | ||
+ | denotes the restriction of a sheaf to $ U $ | ||
+ | and $ {\mathcal A} ^ {(} I) $ | ||
+ | is the direct sum of $ I $ | ||
+ | copies of $ {\mathcal A} $. | ||
+ | A quasi-coherent sheaf is similarly defined on a [[Topologized category|topologized category]] with a sheaf of rings. | ||
+ | If $ ( X , {\mathcal A} ) $ | ||
+ | is an affine scheme, then the association $ {\mathcal F} \mapsto \Gamma ( X , {\mathcal F} ) $ | ||
+ | gives rise to an equivalence of the category of quasi-coherent sheaves of $ {\mathcal A} $- | ||
+ | modules and the category of $ \Gamma ( X , {\mathcal A} ) $- | ||
+ | modules. As a result of this, quasi-coherent sheaves find broad application in the theory of schemes (see also [[Coherent sheaf|Coherent sheaf]]; [[Scheme|Scheme]]). | ||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. 111–115; 126 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. 111–115; 126 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> |
Latest revision as of 08:09, 6 June 2020
A sheaf of modules locally defined by generators and relations. More precisely, let $ X $
be a topological space and let $ {\mathcal A} $
be a sheaf of rings on $ X $;
a sheaf $ {\mathcal F} $
of $ {\mathcal A} $-
modules is called quasi-coherent if for any point $ x \in X $
there is an open neighbourhood $ U $
and an exact sequence of sheaves of $ ( {\mathcal A} \mid _ {U} ) $-
modules
$$ {\mathcal A} | _ {U} ^ {(} I) \rightarrow {\mathcal A} | _ {U} ^ {(} J) \rightarrow \ {\mathcal F} \mid _ {U} \rightarrow 0 , $$
where $ I $ and $ J $ are certain sets, $ \mid _ {U} $ denotes the restriction of a sheaf to $ U $ and $ {\mathcal A} ^ {(} I) $ is the direct sum of $ I $ copies of $ {\mathcal A} $. A quasi-coherent sheaf is similarly defined on a topologized category with a sheaf of rings.
If $ ( X , {\mathcal A} ) $ is an affine scheme, then the association $ {\mathcal F} \mapsto \Gamma ( X , {\mathcal F} ) $ gives rise to an equivalence of the category of quasi-coherent sheaves of $ {\mathcal A} $- modules and the category of $ \Gamma ( X , {\mathcal A} ) $- modules. As a result of this, quasi-coherent sheaves find broad application in the theory of schemes (see also Coherent sheaf; Scheme).
Comments
References
[a1] | R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. 111–115; 126 MR0463157 Zbl 0367.14001 |
Quasi-coherent sheaf. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Quasi-coherent_sheaf&oldid=48377