Difference between revisions of "Pure submodule"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | p0759101.png | ||
+ | $#A+1 = 68 n = 0 | ||
+ | $#C+1 = 68 : ~/encyclopedia/old_files/data/P075/P.0705910 Pure submodule | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''in the sense of Cohn'' | ''in the sense of Cohn'' | ||
− | A submodule | + | A submodule $ A $ |
+ | of a right $ R $- | ||
+ | module $ B $ | ||
+ | such that for any left $ R $- | ||
+ | module $ C $ | ||
+ | the natural homomorphism of Abelian groups | ||
− | + | $$ | |
+ | A \otimes _ {R} C \rightarrow B \otimes _ {R} C | ||
+ | $$ | ||
is injective. This is equivalent to the following condition: If the system of equations | is injective. This is equivalent to the following condition: If the system of equations | ||
− | + | $$ | |
+ | \sum _ { i= } 1 ^ { n } x _ {i} \lambda _ {ij} = a _ {j} ,\ \ | ||
+ | 1 \leq j \leq m ,\ \ | ||
+ | \lambda _ {ij} \in R ,\ a _ {j} \in A , | ||
+ | $$ | ||
− | has a solution in | + | has a solution in $ B $, |
+ | then it has a solution in $ A $( | ||
+ | cf. [[Flat module|Flat module]]). Any direct summand is a pure submodule. All submodules of a right $ R $- | ||
+ | module are pure if and only if $ R $ | ||
+ | is a [[Regular ring (in the sense of von Neumann)|regular ring (in the sense of von Neumann)]]. | ||
− | In the case of Abelian groups (that is, | + | In the case of Abelian groups (that is, $ R = \mathbf Z $), |
+ | the following assertions are equivalent: 1) $ A $ | ||
+ | is a pure (or serving) subgroup of $ B $( | ||
+ | cf. [[Pure subgroup|Pure subgroup]]); 2) $ n A = A \cap n B $ | ||
+ | for every natural number $ n $; | ||
+ | 3) $ A / n A $ | ||
+ | is a direct summand of $ B / n A $ | ||
+ | for every natural number $ n $; | ||
+ | 4) if $ C \subseteq A $ | ||
+ | and $ A / C $ | ||
+ | is a finitely-generated group, then $ A/C $ | ||
+ | is a direct summand of $ B/C $; | ||
+ | 5) every residue class in the quotient group $ B / A $ | ||
+ | contains an element of the same order as the residue class; and 6) if $ A \subseteq C \subseteq B $ | ||
+ | and $ C / A $ | ||
+ | is finitely generated, then $ A $ | ||
+ | is a direct summand of $ C $. | ||
+ | If property 2) is required to hold only for prime numbers $ n $, | ||
+ | then $ A $ | ||
+ | is called a weakly-pure subgroup. | ||
− | The axiomatic approach to the notion of purity is based on the consideration of a class of monomorphism | + | The axiomatic approach to the notion of purity is based on the consideration of a class of monomorphism $ \mathfrak K _ \omega $ |
+ | subject to the following conditions (here $ A \subseteq _ \omega B $ | ||
+ | means that $ A $ | ||
+ | is a submodule of $ B $ | ||
+ | and that the natural imbedding belongs to $ \mathfrak K _ \omega $): | ||
+ | P0') if $ A $ | ||
+ | is a direct summand of $ B $, | ||
+ | then $ A \subseteq _ \omega B $; | ||
+ | P1') if $ A \subseteq _ \omega B $ | ||
+ | and $ B \subseteq _ \omega C $, | ||
+ | then $ A \subseteq _ \omega C $; | ||
+ | P2') if $ A \subseteq B \subseteq C $ | ||
+ | and $ A \subseteq _ \omega C $, | ||
+ | then $ A \subseteq _ \omega B $; | ||
+ | P3') if $ A \subseteq _ \omega B $ | ||
+ | and $ K \subseteq A $, | ||
+ | then $ A / K \subseteq _ \omega B / K $; | ||
+ | and P4') if $ K \subseteq B $, | ||
+ | $ K \subseteq _ \omega B $ | ||
+ | and $ A / K \subseteq _ \omega B / K $, | ||
+ | then $ A \subseteq _ \omega B $. | ||
+ | Taking the class $ \mathfrak K _ \omega $ | ||
+ | instead of the class of all monomorphisms leads to [[Relative homological algebra|relative homological algebra]]. For example, a module $ Q $ | ||
+ | is called $ \omega $- | ||
+ | injective if $ A \subseteq _ \omega B $ | ||
+ | implies that any homomorphism from $ A $ | ||
+ | into $ Q $ | ||
+ | can be extended to a homomorphism from $ B $ | ||
+ | into $ Q $( | ||
+ | cf. [[Injective module|Injective module]]). A pure injective Abelian group is called algebraically compact. The following conditions on an Abelian group $ Q $ | ||
+ | are equivalent: $ \alpha $) | ||
+ | $ Q $ | ||
+ | is algebraically compact; $ \beta $) | ||
+ | $ Q $ | ||
+ | splits as a direct summand of any group that contains it as a pure subgroup; $ \gamma $) | ||
+ | $ Q $ | ||
+ | is a direct summand of a group that admits a compact topology; and $ \delta $) | ||
+ | a system of equations over $ Q $ | ||
+ | is solvable if every finite subsystem of it is solvable. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.P. Mishina, L.A. Skornyakov, "Abelian groups and modules" , Amer. Math. Soc. (1976) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.G. Sklyarenko, "Relative homological algebra in categories of modules" ''Russian Math. Surveys'' , '''33''' : 3 (1978) pp. 97–137 ''Uspekhi Mat. Nauk'' , '''33''' : 3 (1978) pp. 85–120</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Faith, "Algebra: rings, modules, and categories" , '''1''' , Springer (1973)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> L. Fuchs, "Infinite abelian groups" , '''1–2''' , Acad. Press (1970–1973)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.P. Mishina, L.A. Skornyakov, "Abelian groups and modules" , Amer. Math. Soc. (1976) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.G. Sklyarenko, "Relative homological algebra in categories of modules" ''Russian Math. Surveys'' , '''33''' : 3 (1978) pp. 97–137 ''Uspekhi Mat. Nauk'' , '''33''' : 3 (1978) pp. 85–120</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Faith, "Algebra: rings, modules, and categories" , '''1''' , Springer (1973)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> L. Fuchs, "Infinite abelian groups" , '''1–2''' , Acad. Press (1970–1973)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Rotman, "Introduction to homological algebra" , Acad. Press (1979)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Rotman, "Introduction to homological algebra" , Acad. Press (1979)</TD></TR></table> |
Revision as of 08:08, 6 June 2020
in the sense of Cohn
A submodule $ A $ of a right $ R $- module $ B $ such that for any left $ R $- module $ C $ the natural homomorphism of Abelian groups
$$ A \otimes _ {R} C \rightarrow B \otimes _ {R} C $$
is injective. This is equivalent to the following condition: If the system of equations
$$ \sum _ { i= } 1 ^ { n } x _ {i} \lambda _ {ij} = a _ {j} ,\ \ 1 \leq j \leq m ,\ \ \lambda _ {ij} \in R ,\ a _ {j} \in A , $$
has a solution in $ B $, then it has a solution in $ A $( cf. Flat module). Any direct summand is a pure submodule. All submodules of a right $ R $- module are pure if and only if $ R $ is a regular ring (in the sense of von Neumann).
In the case of Abelian groups (that is, $ R = \mathbf Z $), the following assertions are equivalent: 1) $ A $ is a pure (or serving) subgroup of $ B $( cf. Pure subgroup); 2) $ n A = A \cap n B $ for every natural number $ n $; 3) $ A / n A $ is a direct summand of $ B / n A $ for every natural number $ n $; 4) if $ C \subseteq A $ and $ A / C $ is a finitely-generated group, then $ A/C $ is a direct summand of $ B/C $; 5) every residue class in the quotient group $ B / A $ contains an element of the same order as the residue class; and 6) if $ A \subseteq C \subseteq B $ and $ C / A $ is finitely generated, then $ A $ is a direct summand of $ C $. If property 2) is required to hold only for prime numbers $ n $, then $ A $ is called a weakly-pure subgroup.
The axiomatic approach to the notion of purity is based on the consideration of a class of monomorphism $ \mathfrak K _ \omega $ subject to the following conditions (here $ A \subseteq _ \omega B $ means that $ A $ is a submodule of $ B $ and that the natural imbedding belongs to $ \mathfrak K _ \omega $): P0') if $ A $ is a direct summand of $ B $, then $ A \subseteq _ \omega B $; P1') if $ A \subseteq _ \omega B $ and $ B \subseteq _ \omega C $, then $ A \subseteq _ \omega C $; P2') if $ A \subseteq B \subseteq C $ and $ A \subseteq _ \omega C $, then $ A \subseteq _ \omega B $; P3') if $ A \subseteq _ \omega B $ and $ K \subseteq A $, then $ A / K \subseteq _ \omega B / K $; and P4') if $ K \subseteq B $, $ K \subseteq _ \omega B $ and $ A / K \subseteq _ \omega B / K $, then $ A \subseteq _ \omega B $. Taking the class $ \mathfrak K _ \omega $ instead of the class of all monomorphisms leads to relative homological algebra. For example, a module $ Q $ is called $ \omega $- injective if $ A \subseteq _ \omega B $ implies that any homomorphism from $ A $ into $ Q $ can be extended to a homomorphism from $ B $ into $ Q $( cf. Injective module). A pure injective Abelian group is called algebraically compact. The following conditions on an Abelian group $ Q $ are equivalent: $ \alpha $) $ Q $ is algebraically compact; $ \beta $) $ Q $ splits as a direct summand of any group that contains it as a pure subgroup; $ \gamma $) $ Q $ is a direct summand of a group that admits a compact topology; and $ \delta $) a system of equations over $ Q $ is solvable if every finite subsystem of it is solvable.
References
[1] | A.P. Mishina, L.A. Skornyakov, "Abelian groups and modules" , Amer. Math. Soc. (1976) (Translated from Russian) |
[2] | E.G. Sklyarenko, "Relative homological algebra in categories of modules" Russian Math. Surveys , 33 : 3 (1978) pp. 97–137 Uspekhi Mat. Nauk , 33 : 3 (1978) pp. 85–120 |
[3] | C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973) |
[4] | L. Fuchs, "Infinite abelian groups" , 1–2 , Acad. Press (1970–1973) |
Comments
References
[a1] | J. Rotman, "Introduction to homological algebra" , Acad. Press (1979) |
Pure submodule. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pure_submodule&oldid=48356