Namespaces
Variants
Actions

Difference between revisions of "Pseudo-tensor"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
p0758501.png
 +
$#A+1 = 18 n = 0
 +
$#C+1 = 18 : ~/encyclopedia/old_files/data/P075/P.0705850 Pseudo\AAhtensor
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A tensor considered up to multiplication by an arbitrary function (cf. [[Tensor on a vector space|Tensor on a vector space]]).
 
A tensor considered up to multiplication by an arbitrary function (cf. [[Tensor on a vector space|Tensor on a vector space]]).
  
 
====Comments====
 
====Comments====
More precisely, a pseudo-tensor (also called relative tensor) is a quantity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p0758501.png" /> which under a coordinate change transforms as
+
More precisely, a pseudo-tensor (also called relative tensor) is a quantity p _ {j _ {1}  \dots j _ {n} } ^ {i _ {1} \dots i _ {m} } $
 +
which under a coordinate change transforms as
 +
 
 +
$$
 +
\overline{p}\; {} _ {j _ {1}  \dots j _ {n} } ^ {i _ {1} \dots i _ {m} }  = \
 +
\tau ( \overline{x}\; )
 +
p _ {k _ {1}  \dots k _ {n} } ^ {l _ {1} \dots l _ {m} }
 +
 
 +
\frac{\partial  \overline{x}\; {} ^ {i _ {1} } }{\partial  x ^ {l _ {1} } }
 +
\dots
 +
\frac{\partial
 +
\overline{x}\; {} ^ {i _ {m} } }{\partial  x ^ {l _ {m} } }
 +
\cdot
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p0758502.png" /></td> </tr></table>
+
\frac{\partial  x ^ {k _ {1} } }{\partial  \overline{x}\; {} ^ {j _ {1} } }
 +
\dots
 +
\frac{\partial
 +
x ^ {k _ {n} } }{\partial  \overline{x}\; {} ^ {j _ {n} } }
 +
,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p0758503.png" /> is a scalar-valued function. Most frequently (in applications), the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p0758504.png" /> depends in a simple manner on the Jacobian determinant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p0758505.png" /> of the coordinate transformation. In [[#References|[a1]]] the following cases are distinguished:
+
where $  \tau $
 +
is a scalar-valued function. Most frequently (in applications), the function $  \tau $
 +
depends in a simple manner on the Jacobian determinant $  \Delta = \mathop{\rm det}  ( {\partial  \overline{x}\; {}  ^ {i} } / {\partial  x  ^ {j} } ) $
 +
of the coordinate transformation. In [[#References|[a1]]] the following cases are distinguished:
  
i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p0758506.png" />, a tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p07585010.png" />-density of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p07585011.png" /> and anti-weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p07585012.png" />;
+
i) $  \tau = \Delta  ^ {-} w \overline \Delta \; {} ^ {- w  ^  \prime  } $,  
 +
a tensor $  \Delta $-
 +
density of weight $  w $
 +
and anti-weight $  w  ^  \prime  $;
  
ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p07585013.png" />, a tensor density of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p07585015.png" />;
+
ii) $  \tau = | \Delta |  ^ {w} $,  
 +
a tensor density of weight $  w $;
  
iii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p07585016.png" />, a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p07585018.png" />-tensor.
+
iii) $  \tau = \Delta / | \Delta | $,  
 +
a $  W $-
 +
tensor.
  
Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p07585019.png" /> is the complex conjugate of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p07585020.png" />. A tensor density of weight zero is an ordinary tensor (cf. [[Tensor on a vector space|Tensor on a vector space]]).
+
Here $  \overline \Delta \; $
 +
is the complex conjugate of $  \Delta $.  
 +
A tensor density of weight zero is an ordinary tensor (cf. [[Tensor on a vector space|Tensor on a vector space]]).
  
In [[#References|[a2]]] a tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p07585021.png" />-density of weight 1 and anti-weight 0 is called a tensor density and a tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p07585022.png" />-density of weight <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075850/p07585023.png" /> and anti-weight 0 a tensor capacity.
+
In [[#References|[a2]]] a tensor $  \Delta $-
 +
density of weight 1 and anti-weight 0 is called a tensor density and a tensor $  \Delta $-
 +
density of weight $  - 1 $
 +
and anti-weight 0 a tensor capacity.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.A. Schouten,  "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer  (1954)  pp. 11ff  (Translated from German)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R. Sauer (ed.)  I. Szabó (ed.) , ''Mathematische Hilfsmittel des Ingenieurs'' , '''III''' , Springer  (1968)  pp. Sect. G.II.6</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.A. Schouten,  "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer  (1954)  pp. 11ff  (Translated from German)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  R. Sauer (ed.)  I. Szabó (ed.) , ''Mathematische Hilfsmittel des Ingenieurs'' , '''III''' , Springer  (1968)  pp. Sect. G.II.6</TD></TR></table>

Revision as of 08:08, 6 June 2020


A tensor considered up to multiplication by an arbitrary function (cf. Tensor on a vector space).

Comments

More precisely, a pseudo-tensor (also called relative tensor) is a quantity $ p _ {j _ {1} \dots j _ {n} } ^ {i _ {1} \dots i _ {m} } $ which under a coordinate change transforms as

$$ \overline{p}\; {} _ {j _ {1} \dots j _ {n} } ^ {i _ {1} \dots i _ {m} } = \ \tau ( \overline{x}\; ) p _ {k _ {1} \dots k _ {n} } ^ {l _ {1} \dots l _ {m} } \frac{\partial \overline{x}\; {} ^ {i _ {1} } }{\partial x ^ {l _ {1} } } \dots \frac{\partial \overline{x}\; {} ^ {i _ {m} } }{\partial x ^ {l _ {m} } } \cdot \frac{\partial x ^ {k _ {1} } }{\partial \overline{x}\; {} ^ {j _ {1} } } \dots \frac{\partial x ^ {k _ {n} } }{\partial \overline{x}\; {} ^ {j _ {n} } } , $$

where $ \tau $ is a scalar-valued function. Most frequently (in applications), the function $ \tau $ depends in a simple manner on the Jacobian determinant $ \Delta = \mathop{\rm det} ( {\partial \overline{x}\; {} ^ {i} } / {\partial x ^ {j} } ) $ of the coordinate transformation. In [a1] the following cases are distinguished:

i) $ \tau = \Delta ^ {-} w \overline \Delta \; {} ^ {- w ^ \prime } $, a tensor $ \Delta $- density of weight $ w $ and anti-weight $ w ^ \prime $;

ii) $ \tau = | \Delta | ^ {w} $, a tensor density of weight $ w $;

iii) $ \tau = \Delta / | \Delta | $, a $ W $- tensor.

Here $ \overline \Delta \; $ is the complex conjugate of $ \Delta $. A tensor density of weight zero is an ordinary tensor (cf. Tensor on a vector space).

In [a2] a tensor $ \Delta $- density of weight 1 and anti-weight 0 is called a tensor density and a tensor $ \Delta $- density of weight $ - 1 $ and anti-weight 0 a tensor capacity.

References

[a1] J.A. Schouten, "Ricci-calculus. An introduction to tensor analysis and its geometrical applications" , Springer (1954) pp. 11ff (Translated from German)
[a2] R. Sauer (ed.) I. Szabó (ed.) , Mathematische Hilfsmittel des Ingenieurs , III , Springer (1968) pp. Sect. G.II.6
How to Cite This Entry:
Pseudo-tensor. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pseudo-tensor&oldid=48354