Namespaces
Variants
Actions

Difference between revisions of "Pseudo-periodic function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''with periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p0757701.png" />''
+
<!--
 +
p0757701.png
 +
$#A+1 = 22 n = 0
 +
$#C+1 = 22 : ~/encyclopedia/old_files/data/P075/P.0705770 Pseudo\AAhperiodic function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p0757702.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p0757703.png" /> variables satisfying:
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p0757704.png" /></td> </tr></table>
+
''with periods  $  \omega _ {0} \dots \omega _ {r} $''
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p0757705.png" /></td> </tr></table>
+
A function  $  f ( t , u _ {1} \dots u _ {r} ) $
 +
of  $  r + 1 $
 +
variables satisfying:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p0757706.png" /></td> </tr></table>
+
$$
 +
f ( t , u _ {1} \dots u _ {i} + \omega _ {i} \dots u _ {r} ) =
 +
$$
  
Example: if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p0757707.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p0757708.png" /> are continuous periodic functions with periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p0757709.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p07577010.png" />, respectively, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p07577011.png" /> is a pseudo-periodic function.
+
$$
 +
= \
 +
f ( t , u _ {1} \dots u _ {i} \dots u _ {r} ) ,\  i = 1 \dots r ;
 +
$$
  
A pseudo-periodic function is connected with a [[Quasi-periodic function|quasi-periodic function]] and is determined by it in a unique way: A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p07577012.png" /> is quasi-periodic with periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p07577013.png" /> if and only if there exists a continuous pseudo-periodic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p07577014.png" /> with periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p07577015.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p07577016.png" />.
+
$$
 +
f ( t + \omega _ {0} , u _ {1} \dots u _ {r} )  = f (
 +
t , u _ {1} + \omega _ {0} \dots u _ {r} + \omega _ {0} ) .
 +
$$
  
 +
Example: if  $  f _ {0} ( t) $
 +
and  $  f _ {1} ( t) $
 +
are continuous periodic functions with periods  $  \omega _ {0} $
 +
and  $  \omega _ {1} $,
 +
respectively, then  $  f ( t , u _ {1} ) = f _ {0} ( t) + f _ {1} ( t + u _ {1} ) $
 +
is a pseudo-periodic function.
  
 +
A pseudo-periodic function is connected with a [[Quasi-periodic function|quasi-periodic function]] and is determined by it in a unique way: A function  $  F ( t) $
 +
is quasi-periodic with periods  $  \omega _ {0} \dots \omega _ {r} $
 +
if and only if there exists a continuous pseudo-periodic function  $  f ( t , u _ {1} \dots u _ {r} ) $
 +
with periods  $  \omega _ {0} \dots \omega _ {r} $
 +
such that  $  F ( t) = f ( t , 0 \dots 0 ) $.
  
 
====Comments====
 
====Comments====
The expression  "pseudo-periodic function"  is also used to indicate a function with a pseudo-<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p07577018.png" />-period: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p07577019.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p07577020.png" /> and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p07577021.png" />. For such a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p07577022.png" /> the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075770/p07577023.png" /> is pseudo-periodic in the sense above.
+
The expression  "pseudo-periodic function"  is also used to indicate a function with a pseudo- p $-
 +
period: $  g( t+ p) = e ^ {i \theta } w( t) $
 +
for some $  \theta $
 +
and all $  t $.  
 +
For such a function $  g( t) $
 +
the function $  h( t, u) = e ^ {ip  ^ {-} 1 \theta u } g( t) $
 +
is pseudo-periodic in the sense above.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Urabe,  "Green functions of pseudo-periodic differential operators"  M. Urabe (ed.) , ''Japan-United States Sem. Ordinary Differential and Functional Eq.'' , Springer  (1971)  pp. 106–122</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.A. Goldstein,  "Asymptotics for bounded semigroups on Hilbert space"  R. Nagel (ed.)  et al. (ed.) , ''Aspects of Positivity in Funct. Anal.'' , North-Holland  (1986)  pp. 49–62</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  M. Urabe,  "Green functions of pseudo-periodic differential operators"  M. Urabe (ed.) , ''Japan-United States Sem. Ordinary Differential and Functional Eq.'' , Springer  (1971)  pp. 106–122</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  J.A. Goldstein,  "Asymptotics for bounded semigroups on Hilbert space"  R. Nagel (ed.)  et al. (ed.) , ''Aspects of Positivity in Funct. Anal.'' , North-Holland  (1986)  pp. 49–62</TD></TR></table>

Latest revision as of 08:08, 6 June 2020


with periods $ \omega _ {0} \dots \omega _ {r} $

A function $ f ( t , u _ {1} \dots u _ {r} ) $ of $ r + 1 $ variables satisfying:

$$ f ( t , u _ {1} \dots u _ {i} + \omega _ {i} \dots u _ {r} ) = $$

$$ = \ f ( t , u _ {1} \dots u _ {i} \dots u _ {r} ) ,\ i = 1 \dots r ; $$

$$ f ( t + \omega _ {0} , u _ {1} \dots u _ {r} ) = f ( t , u _ {1} + \omega _ {0} \dots u _ {r} + \omega _ {0} ) . $$

Example: if $ f _ {0} ( t) $ and $ f _ {1} ( t) $ are continuous periodic functions with periods $ \omega _ {0} $ and $ \omega _ {1} $, respectively, then $ f ( t , u _ {1} ) = f _ {0} ( t) + f _ {1} ( t + u _ {1} ) $ is a pseudo-periodic function.

A pseudo-periodic function is connected with a quasi-periodic function and is determined by it in a unique way: A function $ F ( t) $ is quasi-periodic with periods $ \omega _ {0} \dots \omega _ {r} $ if and only if there exists a continuous pseudo-periodic function $ f ( t , u _ {1} \dots u _ {r} ) $ with periods $ \omega _ {0} \dots \omega _ {r} $ such that $ F ( t) = f ( t , 0 \dots 0 ) $.

Comments

The expression "pseudo-periodic function" is also used to indicate a function with a pseudo- $ p $- period: $ g( t+ p) = e ^ {i \theta } w( t) $ for some $ \theta $ and all $ t $. For such a function $ g( t) $ the function $ h( t, u) = e ^ {ip ^ {-} 1 \theta u } g( t) $ is pseudo-periodic in the sense above.

References

[a1] M. Urabe, "Green functions of pseudo-periodic differential operators" M. Urabe (ed.) , Japan-United States Sem. Ordinary Differential and Functional Eq. , Springer (1971) pp. 106–122
[a2] J.A. Goldstein, "Asymptotics for bounded semigroups on Hilbert space" R. Nagel (ed.) et al. (ed.) , Aspects of Positivity in Funct. Anal. , North-Holland (1986) pp. 49–62
How to Cite This Entry:
Pseudo-periodic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pseudo-periodic_function&oldid=48350
This article was adapted from an original article by Yu.V. Komlenko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article