Namespaces
Variants
Actions

Difference between revisions of "Pseudo-group structure"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
''on a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p0757101.png" />''
+
<!--
 +
p0757101.png
 +
$#A+1 = 141 n = 3
 +
$#C+1 = 141 : ~/encyclopedia/old_files/data/P075/P.0705710 Pseudo\AAhgroup structure
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A maximal atlas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p0757102.png" /> of smooth local diffeomorphisms (cf. [[Diffeomorphism|Diffeomorphism]]) from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p0757103.png" /> onto a fixed manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p0757104.png" />, all transition functions between them belonging to a given pseudo-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p0757105.png" /> of local transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p0757106.png" />. The pseudo-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p0757107.png" /> is called the defining pseudo-group, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p0757108.png" /> is called the model space. The pseudo-group structure with defining group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p0757109.png" /> is also called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571011.png" />-structure. More precisely, a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571012.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571013.png" />-valued charts of a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571014.png" /> (i.e. of diffeomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571015.png" /> of open subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571016.png" /> onto open subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571017.png" />) is called a pseudo-group structure if a) any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571018.png" /> belongs to the domain of definition of a chart <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571019.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571020.png" />; b) for any charts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571021.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571022.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571023.png" /> the transition function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571024.png" /> is a local transformation from the given pseudo-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571025.png" />; and c) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571026.png" /> is a maximal set of charts satisfying condition b).
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
''on a manifold  $  M $''
 +
 
 +
A maximal atlas $  A $
 +
of smooth local diffeomorphisms (cf. [[Diffeomorphism|Diffeomorphism]]) from $  M $
 +
onto a fixed manifold $  V $,  
 +
all transition functions between them belonging to a given pseudo-group $  \Gamma $
 +
of local transformations of $  V $.  
 +
The pseudo-group $  \Gamma $
 +
is called the defining pseudo-group, and $  V $
 +
is called the model space. The pseudo-group structure with defining group $  \Gamma $
 +
is also called a $  \Gamma $-
 +
structure. More precisely, a set $  A $
 +
of $  V $-
 +
valued charts of a manifold $  M $(
 +
i.e. of diffeomorphisms $  \phi : U \rightarrow V $
 +
of open subsets $  U \subset  M $
 +
onto open subsets $  \phi ( U) \subset  V $)  
 +
is called a pseudo-group structure if a) any point $  x \in M $
 +
belongs to the domain of definition of a chart $  \phi $
 +
of $  A $;  
 +
b) for any charts $  \phi : U \rightarrow V $
 +
and $  \psi : W \rightarrow V $
 +
from $  A $
 +
the transition function $  \psi \circ \phi  ^ {-} 1 : \phi ( U \cap W ) \rightarrow \psi ( U \cap W ) $
 +
is a local transformation from the given pseudo-group $  \Gamma $;  
 +
and c) $  A $
 +
is a maximal set of charts satisfying condition b).
  
 
===Examples of pseudo-group structures.===
 
===Examples of pseudo-group structures.===
  
 +
1) A [[Pseudo-group|pseudo-group]]  $  \Gamma $
 +
of transformations of a manifold  $  V $
 +
gives a pseudo-group structure  $  ( V , \Gamma ) $
 +
on  $  V $
 +
whose charts are the local transformations of  $  \Gamma $.
 +
It is called the standard flat  $  \Gamma $-
 +
structure.
  
1) A [[Pseudo-group|pseudo-group]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571027.png" /> of transformations of a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571028.png" /> gives a pseudo-group structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571029.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571030.png" /> whose charts are the local transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571031.png" />. It is called the standard flat <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571033.png" />-structure.
+
2) Let  $  V = K  ^ {n} $
 +
be an  $  n $-
 +
dimensional vector space over  $  K = \mathbf R , \mathbf C $
 +
or a left module over the skew-field of quaternions  $  K = \mathbf H $,
 +
and let  $  \Gamma $
 +
be the pseudo-group of local transformations of $  V $
 +
whose principal linear parts belong to the group  $  \mathop{\rm GL} ( n , K ) $.  
 +
The corresponding  $  \Gamma $-
 +
structure on a manifold  $  M $
 +
is the structure of a smooth manifold if  $  K = \mathbf R $,
 +
of a complex-analytic manifold if  $  K = \mathbf C $
 +
and of a special quaternionic manifold if  $  K = \mathbf H $.
  
2) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571034.png" /> be an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571035.png" />-dimensional vector space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571036.png" /> or a left module over the skew-field of quaternions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571037.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571038.png" /> be the pseudo-group of local transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571039.png" /> whose principal linear parts belong to the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571040.png" />. The corresponding <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571041.png" />-structure on a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571042.png" /> is the structure of a smooth manifold if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571043.png" />, of a complex-analytic manifold if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571044.png" /> and of a special quaternionic manifold if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571045.png" />.
+
3) Let $  \Gamma $
 +
be the pseudo-group of local transformations of a vector space  $  V $
 +
preserving a given tensor  $  S $.  
 +
Specifying a  $  \Gamma $-
 +
structure is equivalent to specifying an integrable (global) tensor field of type  $  S $
 +
on a manifold $  M $.  
 +
E.g., if  $  S $
 +
is a non-degenerate skew-symmetric  $  2 $-
 +
form, then the  $  \Gamma $-
 +
structure is a [[Symplectic structure|symplectic structure]].
  
3) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571046.png" /> be the pseudo-group of local transformations of a vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571047.png" /> preserving a given tensor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571048.png" />. Specifying a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571049.png" />-structure is equivalent to specifying an integrable (global) tensor field of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571050.png" /> on a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571051.png" />. E.g., if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571052.png" /> is a non-degenerate skew-symmetric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571053.png" />-form, then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571054.png" />-structure is a [[Symplectic structure|symplectic structure]].
+
4) Let $  \Gamma $
 +
be the pseudo-group of local transformations of $  \mathbf R  ^ {2n+} 1 $
 +
that preserve, up to a functional multiplier, the differential  $  1 $-
 +
form
  
4) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571055.png" /> be the pseudo-group of local transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571056.png" /> that preserve, up to a functional multiplier, the differential <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571057.png" />-form
+
$$
 +
d x  ^ {0} +
 +
\sum _ { i= } 1 ^ { n }
 +
x  ^ {2i-} 1  d x  ^ {2i} .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571058.png" /></td> </tr></table>
+
Then the  $  \Gamma $-
 +
structure is a [[Contact structure|contact structure]].
  
Then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571059.png" />-structure is a [[Contact structure|contact structure]].
+
5) Let  $  V = G / H $
 +
be a [[Homogeneous space|homogeneous space]] of a Lie group  $  G $,
 +
and let  $  \Gamma $
 +
be the pseudo-group of local transformations of  $  V $
 +
that can be lifted to transformations of  $  G $.  
 +
Then the  $  \Gamma $-
 +
structure is called the pseudo-group structure determined by the homogeneous space  $  V $.
 +
Examples of such structures are the structure of a space of constant curvature (in particular, that of a locally Euclidean space), and conformally and projectively flat structures.
  
5) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571060.png" /> be a [[Homogeneous space|homogeneous space]] of a Lie group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571061.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571062.png" /> be the pseudo-group of local transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571063.png" /> that can be lifted to transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571064.png" />. Then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571065.png" />-structure is called the pseudo-group structure determined by the homogeneous space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571066.png" />. Examples of such structures are the structure of a space of constant curvature (in particular, that of a locally Euclidean space), and conformally and projectively flat structures.
+
Let $  \Gamma $
 +
be a transitive Lie pseudo-group of transformations of $  V = \mathbf R  ^ {n} $
 +
of order  $  l $,
 +
see [[Pseudo-group|Pseudo-group]]. The  $  \Gamma $-
 +
structure $  A $
 +
on a manifold  $  M $
 +
determines a principal subbundle  $  \pi _ {k} : B  ^ {k} \rightarrow M $
 +
of the co-frame bundle of arbitrary order  $  k $
 +
on  $  M $,
 +
consisting of the  $  k $-
 +
jets of charts of $  A $:
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571067.png" /> be a transitive Lie pseudo-group of transformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571068.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571069.png" />, see [[Pseudo-group|Pseudo-group]]. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571070.png" />-structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571071.png" /> on a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571072.png" /> determines a principal subbundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571073.png" /> of the co-frame bundle of arbitrary order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571074.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571075.png" />, consisting of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571076.png" />-jets of charts of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571077.png" />:
+
$$
 +
B  ^ {k}  = \
 +
\{ {j _ {x}  ^ {k} \phi } : {\phi \in A , \phi ( x) = 0 } \}
 +
,\ \
 +
\pi _ {k} ( j _ {x}  ^ {k} \phi )  = x .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571078.png" /></td> </tr></table>
+
The structure group of  $  \pi _ {k} $
 +
is the  $  k $-
 +
th order isotropy group  $  G  ^ {k} ( \Gamma ) $
 +
of  $  \Gamma $,
 +
which acts on  $  B  ^ {k} $
 +
by the formula
  
The structure group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571079.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571080.png" />-th order isotropy group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571081.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571082.png" />, which acts on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571083.png" /> by the formula
+
$$
 +
j _ {0}  ^ {k} ( a) j _ {x}  ^ {k} \phi  = \
 +
j _ {x}  ^ {k} ( a \circ \phi ) .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571084.png" /></td> </tr></table>
+
The bundle  $  \pi _ {k} $
 +
is called the  $  k $-
 +
th structure bundle, or  $  G  ^ {k} ( \Gamma ) $-
 +
structure, determined by the pseudo-group structure  $  A $.
 +
The bundle  $  \pi _ {l} $,
 +
with  $  l $
 +
the order of  $  \Gamma $,
 +
in turn, uniquely determines the pseudo-group structure  $  A $
 +
as the set of charts  $  \phi : U \rightarrow V $
 +
for which
  
The bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571085.png" /> is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571087.png" />-th structure bundle, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571089.png" />-structure, determined by the pseudo-group structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571090.png" />. The bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571091.png" />, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571092.png" /> the order of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571093.png" />, in turn, uniquely determines the pseudo-group structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571094.png" /> as the set of charts <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571095.png" /> for which
+
$$
 +
j _ {x}  ^ {l} ( a \circ \phi )  \in  B  ^ {l} \ \
 +
\textrm{ if }  a \in \Gamma , a \circ \phi ( x) = 0 .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571096.png" /></td> </tr></table>
+
The geometry of  $  \pi _ {k} $
 +
is characterized by the presence of a canonical  $  G  ^ {k} ( \Gamma ) $-
 +
equivariant  $  1 $-
 +
form  $  \theta  ^ {k} : T B  ^ {k} \rightarrow V + \mathfrak g  ^ {k} ( V) $
 +
that is horizontal relative to the projection  $  B  ^ {k} \rightarrow B  ^ {k-} 1 $.  
 +
Here  $  \mathfrak g  ^ {k} ( V) $
 +
is the Lie algebra of the isotropy group  $  G  ^ {k} ( \Gamma ) $.  
 +
The  $  1 $-
 +
form  $  \theta  ^ {k} $
 +
is given by
  
The geometry of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571097.png" /> is characterized by the presence of a canonical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571098.png" />-equivariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p07571099.png" />-form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710100.png" /> that is horizontal relative to the projection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710101.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710102.png" /> is the Lie algebra of the isotropy group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710103.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710104.png" />-form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710105.png" /> is given by
+
$$
 +
\left .
 +
\theta _ {b  ^ {k}  }  ^ {k} ( \dot{b}  ^ {k} )  = \
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710106.png" /></td> </tr></table>
+
\frac{d}{dt}
 +
 
 +
j _ {0}  ^ {k-} 1 ( \phi _ {t} \circ \phi _ {0}  ^ {-} 1 )
 +
\right | _ {t = 0 }  ,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710107.png" /></td> </tr></table>
+
$$
 +
b  ^ {k}  = j _ {x _ {0}  }  ^ {k} ( \phi _ {0} ) ,\ \
 +
\dot{b}  ^ {k}  =
 +
\frac{d}{dt}
 +
j _ {x _ {t}  }  ^ {k} ( \phi _ {t} ) ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710108.png" /></td> </tr></table>
+
$$
 +
\phi _ {t}  \in  A ,\  \phi _ {t} ( x _ {t} )  = 0 ,\  t \in [ 0 , \epsilon ] ,
 +
$$
  
and satisfies a certain Maurer–Cartan structure equation (cf. also [[Maurer–Cartan form|Maurer–Cartan form]]). The Lie algebra of infinitesimal automorphisms of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710109.png" />-structure can be characterized as the Lie algebra of projectable vector fields on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710110.png" /> that preserve the canonical <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710111.png" />-form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710112.png" />.
+
and satisfies a certain Maurer–Cartan structure equation (cf. also [[Maurer–Cartan form|Maurer–Cartan form]]). The Lie algebra of infinitesimal automorphisms of the $  \Gamma $-
 +
structure can be characterized as the Lie algebra of projectable vector fields on $  B  ^ {l} $
 +
that preserve the canonical $  1 $-
 +
form $  \theta  ^ {l} $.
  
The basic problem in the theory of pseudo-group structures is the description of pseudo-group structures on manifolds with a defining pseudo-group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710113.png" />, up to equivalence. Two pseudo-group structures on a manifold are called equivalent if one of them can be reduced to the other by a diffeomorphism of the manifold.
+
The basic problem in the theory of pseudo-group structures is the description of pseudo-group structures on manifolds with a defining pseudo-group $  \Gamma $,  
 +
up to equivalence. Two pseudo-group structures on a manifold are called equivalent if one of them can be reduced to the other by a diffeomorphism of the manifold.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710114.png" /> be a globalizing transitive pseudo-group of transformations of a simply-connected manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710115.png" />. Any simply-connected manifold with a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710116.png" />-structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710117.png" /> admits a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710118.png" />, called a Cartan development, that locally is an isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710119.png" />-structures. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710120.png" /> has some completeness property, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710121.png" /> is an isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710122.png" />-structures and all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710123.png" />-structures of the type considered are forms of the standard <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710124.png" />-structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710125.png" />, i.e. are obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710126.png" /> by factorization by a freely-acting discrete automorphism group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710127.png" />. This is the case, e.g. for (pseudo-)Riemannian structures of constant curvature and for conformally-flat structures on compact manifolds <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710128.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710129.png" />.
+
Let $  \Gamma $
 +
be a globalizing transitive pseudo-group of transformations of a simply-connected manifold $  V $.  
 +
Any simply-connected manifold with a $  \Gamma $-
 +
structure $  A $
 +
admits a mapping $  \rho : M \rightarrow V $,  
 +
called a Cartan development, that locally is an isomorphism of $  \Gamma $-
 +
structures. If $  A $
 +
has some completeness property, then $  \rho $
 +
is an isomorphism of $  \Gamma $-
 +
structures and all $  \Gamma $-
 +
structures of the type considered are forms of the standard $  \Gamma $-
 +
structure $  V $,  
 +
i.e. are obtained from $  V $
 +
by factorization by a freely-acting discrete automorphism group $  ( V , \Gamma ) $.  
 +
This is the case, e.g. for (pseudo-)Riemannian structures of constant curvature and for conformally-flat structures on compact manifolds $  M  ^ {n} $,  
 +
$  n > 2 $.
  
The theory of deformations, originally developed for complex structures, occupies an important place in the theory of pseudo-group structures. In it one studies problems of the description of non-trivial deformations of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710130.png" />-structure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710131.png" />, i.e. a family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710132.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710133.png" />-structures containing the given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710134.png" />-structure and smoothly depending on a parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710135.png" />, modulo trivial deformations. The space of formal infinitesimal non-trivial deformations of a given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710136.png" />-structure is described by the one-dimensional cohomology space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710137.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710138.png" /> with coefficients in the sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710139.png" /> of germs of infinitesimal automorphisms of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710140.png" />. The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710141.png" />-structure is rigid if this space is trivial. If the two-dimensional cohomology space is trivial, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710142.png" />, one can prove, under certain assumptions, that there exist non-trivial deformations of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710143.png" />-structure, corresponding to given infinitesimal deformations from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710144.png" />.
+
The theory of deformations, originally developed for complex structures, occupies an important place in the theory of pseudo-group structures. In it one studies problems of the description of non-trivial deformations of a $  \Gamma $-
 +
structure $  A $,  
 +
i.e. a family $  A _ {t} $
 +
of $  \Gamma $-
 +
structures containing the given $  \Gamma $-
 +
structure and smoothly depending on a parameter $  t $,  
 +
modulo trivial deformations. The space of formal infinitesimal non-trivial deformations of a given $  \Gamma $-
 +
structure is described by the one-dimensional cohomology space $  H  ^ {1} ( M , \Theta ) $
 +
of $  M $
 +
with coefficients in the sheaf $  \Theta $
 +
of germs of infinitesimal automorphisms of $  A $.  
 +
The $  \Gamma $-
 +
structure is rigid if this space is trivial. If the two-dimensional cohomology space is trivial, $  H  ^ {2} ( H , \Theta ) = 0 $,  
 +
one can prove, under certain assumptions, that there exist non-trivial deformations of the $  \Gamma $-
 +
structure, corresponding to given infinitesimal deformations from $  H  ^ {1} ( M , \Theta ) $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Cartan,  "La géométrie des éspaces Riemanniennes" , ''Mém. Sci. Math.'' , '''9''' , Gauthier-Villars  (1925)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V. Guillemin,  S. Sternberg,  "Deformation theory of pseudogroup structures" , ''Mem. Amer. Math. Soc.'' , '''64''' , Amer. Math. Soc.  (1966)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.S. Pollack,  "The integrability of pseudogroup structures"  ''J. Diff. Geom.'' , '''9''' :  3  (1974)  pp. 355–390</TD></TR><TR><TD valign="top">[4a]</TD> <TD valign="top">  P.A. Griffiths,  "Deformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710145.png" />-structures. Part A: General theory of deformations"  ''Math. Ann.'' , '''155''' :  4  (1964)  pp. 292–315</TD></TR><TR><TD valign="top">[4b]</TD> <TD valign="top">  P.A. Griffiths,  "Deformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710146.png" />-structures. Part B: Deformations of geometric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710147.png" />-structures"  ''Math. Ann.'' , '''158''' :  5  (1965)  pp. 326–351</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  J.F. Pommaret,  "Théorie des déformations des structures"  ''Ann. Inst. H. Poincaré Nouvelle Sér.'' , '''18'''  (1973)  pp. 285–352  (English abstract)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  L. Berard Bergery,  J.-P. Bourgignon,  J. Lafontaine,  "Déformations localement triviales des variétés Riemanniennes" , ''Differential geometry'' , ''Proc. Symp. Pure Math.'' , '''27''' , Amer. Math. Soc.  (1975)  pp. 3–32</TD></TR><TR><TD valign="top">[7a]</TD> <TD valign="top">  D.C. Spencer,  "Deformation of structures on manifolds defined by transitive, continuous pseudogroups I. Infinitesimal deformations of structure"  ''Ann. of Math.'' , '''76''' :  2  (1962)  pp. 306–398</TD></TR><TR><TD valign="top">[7b]</TD> <TD valign="top">  D.C. Spencer,  "Deformation of structures on manifolds defined by transitive, continuous pseudogroups II. Deformations of structure"  ''Ann. of Math.'' , '''76''' :  3  (1962)  pp. 399–445</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  E. Cartan,  "La géométrie des éspaces Riemanniennes" , ''Mém. Sci. Math.'' , '''9''' , Gauthier-Villars  (1925)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V. Guillemin,  S. Sternberg,  "Deformation theory of pseudogroup structures" , ''Mem. Amer. Math. Soc.'' , '''64''' , Amer. Math. Soc.  (1966)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.S. Pollack,  "The integrability of pseudogroup structures"  ''J. Diff. Geom.'' , '''9''' :  3  (1974)  pp. 355–390</TD></TR><TR><TD valign="top">[4a]</TD> <TD valign="top">  P.A. Griffiths,  "Deformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710145.png" />-structures. Part A: General theory of deformations"  ''Math. Ann.'' , '''155''' :  4  (1964)  pp. 292–315</TD></TR><TR><TD valign="top">[4b]</TD> <TD valign="top">  P.A. Griffiths,  "Deformations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710146.png" />-structures. Part B: Deformations of geometric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710147.png" />-structures"  ''Math. Ann.'' , '''158''' :  5  (1965)  pp. 326–351</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  J.F. Pommaret,  "Théorie des déformations des structures"  ''Ann. Inst. H. Poincaré Nouvelle Sér.'' , '''18'''  (1973)  pp. 285–352  (English abstract)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  L. Berard Bergery,  J.-P. Bourgignon,  J. Lafontaine,  "Déformations localement triviales des variétés Riemanniennes" , ''Differential geometry'' , ''Proc. Symp. Pure Math.'' , '''27''' , Amer. Math. Soc.  (1975)  pp. 3–32</TD></TR><TR><TD valign="top">[7a]</TD> <TD valign="top">  D.C. Spencer,  "Deformation of structures on manifolds defined by transitive, continuous pseudogroups I. Infinitesimal deformations of structure"  ''Ann. of Math.'' , '''76''' :  2  (1962)  pp. 306–398</TD></TR><TR><TD valign="top">[7b]</TD> <TD valign="top">  D.C. Spencer,  "Deformation of structures on manifolds defined by transitive, continuous pseudogroups II. Deformations of structure"  ''Ann. of Math.'' , '''76''' :  3  (1962)  pp. 399–445</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
For the topic of classifying spaces for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075710/p075710148.png" />-structures cf. [[#References|[a2]]].
+
For the topic of classifying spaces for $  \Gamma $-
 +
structures cf. [[#References|[a2]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Kobayashi,  K. Nomizu,  "Foundations of differential geometry" , '''1''' , Interscience  (1963)  pp. Chapt. 1</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Haefliger,  "Homotopy and integrability"  J.N. Mordeson (ed.)  et al. (ed.) , ''Structure of arbitrary purely inseparable extension fields'' , ''Lect. notes in math.'' , '''173''' , Springer  (1971)  pp. 133–163</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J.F. Pommaret,  "Systems of partial differential equations and Lie pseudogroups" , Gordon &amp; Breach  (1978)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M. Hazewinkel (ed.)  M. Gerstenhaber (ed.) , ''Deformation theory of algebras and structures and applications'' , Kluwer  (1988)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  S. Kobayashi,  K. Nomizu,  "Foundations of differential geometry" , '''1''' , Interscience  (1963)  pp. Chapt. 1</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Haefliger,  "Homotopy and integrability"  J.N. Mordeson (ed.)  et al. (ed.) , ''Structure of arbitrary purely inseparable extension fields'' , ''Lect. notes in math.'' , '''173''' , Springer  (1971)  pp. 133–163</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  J.F. Pommaret,  "Systems of partial differential equations and Lie pseudogroups" , Gordon &amp; Breach  (1978)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  M. Hazewinkel (ed.)  M. Gerstenhaber (ed.) , ''Deformation theory of algebras and structures and applications'' , Kluwer  (1988)</TD></TR></table>

Revision as of 08:08, 6 June 2020


on a manifold $ M $

A maximal atlas $ A $ of smooth local diffeomorphisms (cf. Diffeomorphism) from $ M $ onto a fixed manifold $ V $, all transition functions between them belonging to a given pseudo-group $ \Gamma $ of local transformations of $ V $. The pseudo-group $ \Gamma $ is called the defining pseudo-group, and $ V $ is called the model space. The pseudo-group structure with defining group $ \Gamma $ is also called a $ \Gamma $- structure. More precisely, a set $ A $ of $ V $- valued charts of a manifold $ M $( i.e. of diffeomorphisms $ \phi : U \rightarrow V $ of open subsets $ U \subset M $ onto open subsets $ \phi ( U) \subset V $) is called a pseudo-group structure if a) any point $ x \in M $ belongs to the domain of definition of a chart $ \phi $ of $ A $; b) for any charts $ \phi : U \rightarrow V $ and $ \psi : W \rightarrow V $ from $ A $ the transition function $ \psi \circ \phi ^ {-} 1 : \phi ( U \cap W ) \rightarrow \psi ( U \cap W ) $ is a local transformation from the given pseudo-group $ \Gamma $; and c) $ A $ is a maximal set of charts satisfying condition b).

Examples of pseudo-group structures.

1) A pseudo-group $ \Gamma $ of transformations of a manifold $ V $ gives a pseudo-group structure $ ( V , \Gamma ) $ on $ V $ whose charts are the local transformations of $ \Gamma $. It is called the standard flat $ \Gamma $- structure.

2) Let $ V = K ^ {n} $ be an $ n $- dimensional vector space over $ K = \mathbf R , \mathbf C $ or a left module over the skew-field of quaternions $ K = \mathbf H $, and let $ \Gamma $ be the pseudo-group of local transformations of $ V $ whose principal linear parts belong to the group $ \mathop{\rm GL} ( n , K ) $. The corresponding $ \Gamma $- structure on a manifold $ M $ is the structure of a smooth manifold if $ K = \mathbf R $, of a complex-analytic manifold if $ K = \mathbf C $ and of a special quaternionic manifold if $ K = \mathbf H $.

3) Let $ \Gamma $ be the pseudo-group of local transformations of a vector space $ V $ preserving a given tensor $ S $. Specifying a $ \Gamma $- structure is equivalent to specifying an integrable (global) tensor field of type $ S $ on a manifold $ M $. E.g., if $ S $ is a non-degenerate skew-symmetric $ 2 $- form, then the $ \Gamma $- structure is a symplectic structure.

4) Let $ \Gamma $ be the pseudo-group of local transformations of $ \mathbf R ^ {2n+} 1 $ that preserve, up to a functional multiplier, the differential $ 1 $- form

$$ d x ^ {0} + \sum _ { i= } 1 ^ { n } x ^ {2i-} 1 d x ^ {2i} . $$

Then the $ \Gamma $- structure is a contact structure.

5) Let $ V = G / H $ be a homogeneous space of a Lie group $ G $, and let $ \Gamma $ be the pseudo-group of local transformations of $ V $ that can be lifted to transformations of $ G $. Then the $ \Gamma $- structure is called the pseudo-group structure determined by the homogeneous space $ V $. Examples of such structures are the structure of a space of constant curvature (in particular, that of a locally Euclidean space), and conformally and projectively flat structures.

Let $ \Gamma $ be a transitive Lie pseudo-group of transformations of $ V = \mathbf R ^ {n} $ of order $ l $, see Pseudo-group. The $ \Gamma $- structure $ A $ on a manifold $ M $ determines a principal subbundle $ \pi _ {k} : B ^ {k} \rightarrow M $ of the co-frame bundle of arbitrary order $ k $ on $ M $, consisting of the $ k $- jets of charts of $ A $:

$$ B ^ {k} = \ \{ {j _ {x} ^ {k} \phi } : {\phi \in A , \phi ( x) = 0 } \} ,\ \ \pi _ {k} ( j _ {x} ^ {k} \phi ) = x . $$

The structure group of $ \pi _ {k} $ is the $ k $- th order isotropy group $ G ^ {k} ( \Gamma ) $ of $ \Gamma $, which acts on $ B ^ {k} $ by the formula

$$ j _ {0} ^ {k} ( a) j _ {x} ^ {k} \phi = \ j _ {x} ^ {k} ( a \circ \phi ) . $$

The bundle $ \pi _ {k} $ is called the $ k $- th structure bundle, or $ G ^ {k} ( \Gamma ) $- structure, determined by the pseudo-group structure $ A $. The bundle $ \pi _ {l} $, with $ l $ the order of $ \Gamma $, in turn, uniquely determines the pseudo-group structure $ A $ as the set of charts $ \phi : U \rightarrow V $ for which

$$ j _ {x} ^ {l} ( a \circ \phi ) \in B ^ {l} \ \ \textrm{ if } a \in \Gamma , a \circ \phi ( x) = 0 . $$

The geometry of $ \pi _ {k} $ is characterized by the presence of a canonical $ G ^ {k} ( \Gamma ) $- equivariant $ 1 $- form $ \theta ^ {k} : T B ^ {k} \rightarrow V + \mathfrak g ^ {k} ( V) $ that is horizontal relative to the projection $ B ^ {k} \rightarrow B ^ {k-} 1 $. Here $ \mathfrak g ^ {k} ( V) $ is the Lie algebra of the isotropy group $ G ^ {k} ( \Gamma ) $. The $ 1 $- form $ \theta ^ {k} $ is given by

$$ \left . \theta _ {b ^ {k} } ^ {k} ( \dot{b} ^ {k} ) = \ \frac{d}{dt} j _ {0} ^ {k-} 1 ( \phi _ {t} \circ \phi _ {0} ^ {-} 1 ) \right | _ {t = 0 } , $$

where

$$ b ^ {k} = j _ {x _ {0} } ^ {k} ( \phi _ {0} ) ,\ \ \dot{b} ^ {k} = \frac{d}{dt} j _ {x _ {t} } ^ {k} ( \phi _ {t} ) , $$

$$ \phi _ {t} \in A ,\ \phi _ {t} ( x _ {t} ) = 0 ,\ t \in [ 0 , \epsilon ] , $$

and satisfies a certain Maurer–Cartan structure equation (cf. also Maurer–Cartan form). The Lie algebra of infinitesimal automorphisms of the $ \Gamma $- structure can be characterized as the Lie algebra of projectable vector fields on $ B ^ {l} $ that preserve the canonical $ 1 $- form $ \theta ^ {l} $.

The basic problem in the theory of pseudo-group structures is the description of pseudo-group structures on manifolds with a defining pseudo-group $ \Gamma $, up to equivalence. Two pseudo-group structures on a manifold are called equivalent if one of them can be reduced to the other by a diffeomorphism of the manifold.

Let $ \Gamma $ be a globalizing transitive pseudo-group of transformations of a simply-connected manifold $ V $. Any simply-connected manifold with a $ \Gamma $- structure $ A $ admits a mapping $ \rho : M \rightarrow V $, called a Cartan development, that locally is an isomorphism of $ \Gamma $- structures. If $ A $ has some completeness property, then $ \rho $ is an isomorphism of $ \Gamma $- structures and all $ \Gamma $- structures of the type considered are forms of the standard $ \Gamma $- structure $ V $, i.e. are obtained from $ V $ by factorization by a freely-acting discrete automorphism group $ ( V , \Gamma ) $. This is the case, e.g. for (pseudo-)Riemannian structures of constant curvature and for conformally-flat structures on compact manifolds $ M ^ {n} $, $ n > 2 $.

The theory of deformations, originally developed for complex structures, occupies an important place in the theory of pseudo-group structures. In it one studies problems of the description of non-trivial deformations of a $ \Gamma $- structure $ A $, i.e. a family $ A _ {t} $ of $ \Gamma $- structures containing the given $ \Gamma $- structure and smoothly depending on a parameter $ t $, modulo trivial deformations. The space of formal infinitesimal non-trivial deformations of a given $ \Gamma $- structure is described by the one-dimensional cohomology space $ H ^ {1} ( M , \Theta ) $ of $ M $ with coefficients in the sheaf $ \Theta $ of germs of infinitesimal automorphisms of $ A $. The $ \Gamma $- structure is rigid if this space is trivial. If the two-dimensional cohomology space is trivial, $ H ^ {2} ( H , \Theta ) = 0 $, one can prove, under certain assumptions, that there exist non-trivial deformations of the $ \Gamma $- structure, corresponding to given infinitesimal deformations from $ H ^ {1} ( M , \Theta ) $.

References

[1] E. Cartan, "La géométrie des éspaces Riemanniennes" , Mém. Sci. Math. , 9 , Gauthier-Villars (1925)
[2] V. Guillemin, S. Sternberg, "Deformation theory of pseudogroup structures" , Mem. Amer. Math. Soc. , 64 , Amer. Math. Soc. (1966)
[3] A.S. Pollack, "The integrability of pseudogroup structures" J. Diff. Geom. , 9 : 3 (1974) pp. 355–390
[4a] P.A. Griffiths, "Deformations of -structures. Part A: General theory of deformations" Math. Ann. , 155 : 4 (1964) pp. 292–315
[4b] P.A. Griffiths, "Deformations of -structures. Part B: Deformations of geometric -structures" Math. Ann. , 158 : 5 (1965) pp. 326–351
[5] J.F. Pommaret, "Théorie des déformations des structures" Ann. Inst. H. Poincaré Nouvelle Sér. , 18 (1973) pp. 285–352 (English abstract)
[6] L. Berard Bergery, J.-P. Bourgignon, J. Lafontaine, "Déformations localement triviales des variétés Riemanniennes" , Differential geometry , Proc. Symp. Pure Math. , 27 , Amer. Math. Soc. (1975) pp. 3–32
[7a] D.C. Spencer, "Deformation of structures on manifolds defined by transitive, continuous pseudogroups I. Infinitesimal deformations of structure" Ann. of Math. , 76 : 2 (1962) pp. 306–398
[7b] D.C. Spencer, "Deformation of structures on manifolds defined by transitive, continuous pseudogroups II. Deformations of structure" Ann. of Math. , 76 : 3 (1962) pp. 399–445

Comments

For the topic of classifying spaces for $ \Gamma $- structures cf. [a2].

References

[a1] S. Kobayashi, K. Nomizu, "Foundations of differential geometry" , 1 , Interscience (1963) pp. Chapt. 1
[a2] A. Haefliger, "Homotopy and integrability" J.N. Mordeson (ed.) et al. (ed.) , Structure of arbitrary purely inseparable extension fields , Lect. notes in math. , 173 , Springer (1971) pp. 133–163
[a3] J.F. Pommaret, "Systems of partial differential equations and Lie pseudogroups" , Gordon & Breach (1978)
[a4] M. Hazewinkel (ed.) M. Gerstenhaber (ed.) , Deformation theory of algebras and structures and applications , Kluwer (1988)
How to Cite This Entry:
Pseudo-group structure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pseudo-group_structure&oldid=48347
This article was adapted from an original article by D.V. Alekseevskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article