Namespaces
Variants
Actions

Difference between revisions of "Prolongation of solutions of differential equations"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
p0754001.png
 +
$#A+1 = 69 n = 0
 +
$#C+1 = 69 : ~/encyclopedia/old_files/data/P075/P.0705400 Prolongation of solutions of differential equations
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
The property of solutions of ordinary differential equations to be extendible to a larger interval of the independent variable. Let
 
The property of solutions of ordinary differential equations to be extendible to a larger interval of the independent variable. Let
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p0754001.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
= \phi ( t),\ \
 +
t \in I,
 +
$$
  
 
be a solution of the system
 
be a solution of the system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p0754002.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
\dot{x}  = f ( t, x),\ \
 +
x \in \mathbf R  ^ {n} .
 +
$$
  
A solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p0754003.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p0754004.png" />, is called a prolongation of the solution (1) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p0754005.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p0754006.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p0754007.png" />.
+
A solution $  x = \psi ( t) $,  
 +
$  t \in J $,  
 +
is called a prolongation of the solution (1) if $  J \supset I $
 +
and $  \psi ( t) \equiv \phi ( t) $
 +
for $  t \in I $.
  
 
Suppose that the function
 
Suppose that the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p0754008.png" /></td> </tr></table>
+
$$
 +
f ( x, t)  =  ( f _ {1} ( t, x _ {1} \dots x _ {n} ) \dots f _ {n} ( t, x _ {1} \dots x _ {n} ))
 +
$$
 +
 
 +
is defined in a domain  $  G \subset  \mathbf R _ {t,x} ^ {n + 1 } $
 +
and suppose  $  t _ {0} \in I $.
 +
The solution (1) is called indefinitely extendible (indefinitely extendible forwards (to the right), indefinitely extendible backward (to the left)) if a prolongation of it exists defined on the axis  $  - \infty < t < \infty $(
 +
respectively, on the semi-axis  $  t _ {0} \leq  t < \infty $,
 +
on the semi-axis  $  - \infty < t \leq  t _ {0} $).
 +
The solution (1) is called extendible forwards (to the right) up to the boundary  $  \Gamma $
 +
of  $  G $
 +
if a prolongation  $  x = \psi ( t) $,
 +
$  t _ {0} \leq  t \leq  t _ {+} < \infty $,
 +
of it exists with the following property: For any compact set  $  F \subset  G $
 +
there is a value  $  t = t _ {F} $,
 +
$  t _ {0} < t _ {F} < t _ {+} $,
 +
such that the point  $  ( t _ {F} , \psi ( t _ {F} )) $
 +
does not belong to  $  F $.  
 +
Extendibility backward (to the left) up to the boundary  $  \Gamma $
 +
is defined analogously. A solution that cannot be extended is called non-extendible.
  
is defined in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p0754009.png" /> and suppose <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540010.png" />. The solution (1) is called indefinitely extendible (indefinitely extendible forwards (to the right), indefinitely extendible backward (to the left)) if a prolongation of it exists defined on the axis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540011.png" /> (respectively, on the semi-axis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540012.png" />, on the semi-axis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540013.png" />). The solution (1) is called extendible forwards (to the right) up to the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540014.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540015.png" /> if a prolongation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540017.png" />, of it exists with the following property: For any compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540018.png" /> there is a value <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540020.png" />, such that the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540021.png" /> does not belong to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540022.png" />. Extendibility backward (to the left) up to the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540023.png" /> is defined analogously. A solution that cannot be extended is called non-extendible.
+
If the function  $  f ( t, x) $
 +
is continuous in $  G $,
 +
then every solution (1) of (2) can be either extended forwards (backward) or indefinitely or up to the boundary $  \Gamma $.  
 +
In other words, every solution of (2) can be extended to a non-extendible solution. If the partial derivatives
  
If the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540024.png" /> is continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540025.png" />, then every solution (1) of (2) can be either extended forwards (backward) or indefinitely or up to the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540026.png" />. In other words, every solution of (2) can be extended to a non-extendible solution. If the partial derivatives
+
$$ \tag{3 }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540027.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
\frac{\partial  f _ {i} }{\partial  x _ {j} }
 +
,\ \
 +
i, j = 1 \dots n ,
 +
$$
  
are continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540028.png" />, then such a prolongation is unique.
+
are continuous in $  G $,  
 +
then such a prolongation is unique.
  
An interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540029.png" /> is called a maximal interval of existence of a solution of (2) if the solution cannot be extended to a larger interval. For any solution of a linear system
+
An interval $  J $
 +
is called a maximal interval of existence of a solution of (2) if the solution cannot be extended to a larger interval. For any solution of a linear system
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540030.png" /></td> </tr></table>
+
$$
 +
\dot{x} _ {i}  = \
 +
\sum _ {j = 1 } ^ { n }
 +
a _ {ij} ( t) x _ {j} +
 +
f _ {i} ( t),\ \
 +
1 \leq  i \leq  n,
 +
$$
  
with coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540031.png" /> and right-hand sides <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540033.png" />, that are continuous on an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540034.png" />, the maximal interval of existence of a solution coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540035.png" />. For solutions of a non-linear system the maximal intervals of existence may differ for different solutions, and determining them is a difficult task. E.g. for the solution to the [[Cauchy problem|Cauchy problem]]
+
with coefficients $  a _ {ij} ( t) $
 +
and right-hand sides $  f _ {i} ( t) $,
 +
$  1 \leq  i, j \leq  n $,  
 +
that are continuous on an interval $  J $,  
 +
the maximal interval of existence of a solution coincides with $  J $.  
 +
For solutions of a non-linear system the maximal intervals of existence may differ for different solutions, and determining them is a difficult task. E.g. for the solution to the [[Cauchy problem|Cauchy problem]]
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540036.png" /></td> </tr></table>
+
$$
 +
\dot{x}  = x  ^ {2} ,\ \
 +
x ( t _ {0} )  = x _ {0} ,
 +
$$
  
 
one has
 
one has
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540037.png" /></td> </tr></table>
+
$$
 +
= ( t _ {0} + x _ {0}  ^ {-} 1 , \infty )
 +
$$
 +
 
 +
if  $  x _ {0} < 0 $,
 +
 
 +
$$
 +
= (- \infty , t _ {0} + x _ {0}  ^ {-} 1 )
 +
$$
 +
 
 +
if  $  x _ {0} > 0 $,
 +
and
  
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540038.png" />,
+
$$
 +
= (- \infty , \infty )
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540039.png" /></td> </tr></table>
+
if  $  x _ {0} = 0 $.
  
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540040.png" />, and
+
A sufficient condition under which one can indicate the maximal interval of existence of a solution is, e.g., Wintner's theorem: Suppose that the function  $  f ( t, x) $
 +
is continuous for  $  t \in J = [ t _ {0} , t _ {0} + a] $,
 +
$  x \in \mathbf R  ^ {n} $,  
 +
and that it satisfies in this domain the estimate
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540041.png" /></td> </tr></table>
+
$$
 +
| f ( t, x) |  \leq  L ( | x | ),
 +
$$
  
if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540042.png" />.
+
where  $  L ( r) $
 +
is a function continuous for  $  r \geq  0 $,
 +
$  L ( r) > 0 $
 +
and for some  $  \delta $,
 +
$  0 \leq  \delta < \infty $,
  
A sufficient condition under which one can indicate the maximal interval of existence of a solution is, e.g., Wintner's theorem: Suppose that the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540043.png" /> is continuous for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540044.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540045.png" />, and that it satisfies in this domain the estimate
+
$$
 +
\int\limits _  \delta  ^  \infty 
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540046.png" /></td> </tr></table>
+
\frac{dr }{L ( r) }
 +
  = + \infty .
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540047.png" /> is a function continuous for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540048.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540049.png" /> and for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540051.png" />,
+
Then every solution of (2) exists on the whole of  $  J $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540052.png" /></td> </tr></table>
+
This theorem also holds for  $  J = [ t _ {0} , \infty ) $.
 +
Sufficient conditions for indefinite extendibility of a solution are of great interest. E.g., if  $  f ( t, x) $
 +
and its partial derivatives (3) are continuous for  $  t _ {0} \leq  t < \infty $,
 +
$  x \in \mathbf R  ^ {n} $,
 +
and if for these values of  $  t, x $
 +
the estimates
  
Then every solution of (2) exists on the whole of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540053.png" />.
+
$$
 +
\left |
  
This theorem also holds for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540054.png" />. Sufficient conditions for indefinite extendibility of a solution are of great interest. E.g., if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540055.png" /> and its partial derivatives (3) are continuous for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540056.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540057.png" />, and if for these values of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540058.png" /> the estimates
+
\frac{\partial f _ {i} }{\partial  x _ {j} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540059.png" /></td> </tr></table>
+
\right |  \leq  c ( t)  < \infty ,\ \
 +
i, j = 1 \dots n,
 +
$$
  
hold, then the solution of (2) with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540060.png" /> exists for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540061.png" />, for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540062.png" />.
+
hold, then the solution of (2) with $  x ( t _ {0} ) = x _ {0} $
 +
exists for $  t _ {0} \leq  t < \infty $,  
 +
for any $  x _ {0} \in \mathbf R  ^ {n} $.
  
 
Consider the Cauchy problem
 
Consider the Cauchy problem
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540063.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4 }
 +
\dot{x}  = f ( x),\ \
 +
x ( t _ {0} ) = x _ {0} ,
 +
$$
  
for an [[Autonomous system|autonomous system]], where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540064.png" /> is continuously differentiable in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540065.png" />. If, as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540066.png" /> grows, the phase trajectory of the solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540067.png" /> of (4) remains in a compact subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540068.png" />, then this solution can be extended to the semi-axis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p075/p075400/p07540069.png" />.
+
for an [[Autonomous system|autonomous system]], where $  f ( x) $
 +
is continuously differentiable in a domain $  G \subset  \mathbf R _ {x}  ^ {n} $.  
 +
If, as $  t $
 +
grows, the phase trajectory of the solution $  x = \phi ( t) $
 +
of (4) remains in a compact subset $  F \subset  G $,  
 +
then this solution can be extended to the semi-axis $  t _ {0} \leq  t < \infty $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.S. Pontryagin,  "Ordinary differential equations" , Addison-Wesley  (1962)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.I. Arnol'd,  "Ordinary differential equations" , M.I.T.  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.V. Nemytskii,  V.V. Stepanov,  "Qualitative theory of differential equations" , Princeton Univ. Press  (1960)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E.A. Coddington,  N. Levinson,  "Theory of ordinary differential equations" , McGraw-Hill  (1955)  pp. Chapts. 13–17</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  P. Hartman,  "Ordinary differential equations" , Birkhäuser  (1982)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  L. Cesari,  "Asymptotic behavior and stability problems in ordinary differential equations" , Springer  (1959)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  A. Wintner,  "The non-local existence problem of ordinary differential equations"  ''Amer. J. Math.'' , '''67'''  (1945)  pp. 277–284</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  L.S. Pontryagin,  "Ordinary differential equations" , Addison-Wesley  (1962)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.I. Arnol'd,  "Ordinary differential equations" , M.I.T.  (1973)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.V. Nemytskii,  V.V. Stepanov,  "Qualitative theory of differential equations" , Princeton Univ. Press  (1960)  (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  E.A. Coddington,  N. Levinson,  "Theory of ordinary differential equations" , McGraw-Hill  (1955)  pp. Chapts. 13–17</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  P. Hartman,  "Ordinary differential equations" , Birkhäuser  (1982)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  L. Cesari,  "Asymptotic behavior and stability problems in ordinary differential equations" , Springer  (1959)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  A. Wintner,  "The non-local existence problem of ordinary differential equations"  ''Amer. J. Math.'' , '''67'''  (1945)  pp. 277–284</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
Instead of prolongation of solutions, continuation of solutions is nowadays mostly used.
 
Instead of prolongation of solutions, continuation of solutions is nowadays mostly used.

Latest revision as of 08:08, 6 June 2020


The property of solutions of ordinary differential equations to be extendible to a larger interval of the independent variable. Let

$$ \tag{1 } x = \phi ( t),\ \ t \in I, $$

be a solution of the system

$$ \tag{2 } \dot{x} = f ( t, x),\ \ x \in \mathbf R ^ {n} . $$

A solution $ x = \psi ( t) $, $ t \in J $, is called a prolongation of the solution (1) if $ J \supset I $ and $ \psi ( t) \equiv \phi ( t) $ for $ t \in I $.

Suppose that the function

$$ f ( x, t) = ( f _ {1} ( t, x _ {1} \dots x _ {n} ) \dots f _ {n} ( t, x _ {1} \dots x _ {n} )) $$

is defined in a domain $ G \subset \mathbf R _ {t,x} ^ {n + 1 } $ and suppose $ t _ {0} \in I $. The solution (1) is called indefinitely extendible (indefinitely extendible forwards (to the right), indefinitely extendible backward (to the left)) if a prolongation of it exists defined on the axis $ - \infty < t < \infty $( respectively, on the semi-axis $ t _ {0} \leq t < \infty $, on the semi-axis $ - \infty < t \leq t _ {0} $). The solution (1) is called extendible forwards (to the right) up to the boundary $ \Gamma $ of $ G $ if a prolongation $ x = \psi ( t) $, $ t _ {0} \leq t \leq t _ {+} < \infty $, of it exists with the following property: For any compact set $ F \subset G $ there is a value $ t = t _ {F} $, $ t _ {0} < t _ {F} < t _ {+} $, such that the point $ ( t _ {F} , \psi ( t _ {F} )) $ does not belong to $ F $. Extendibility backward (to the left) up to the boundary $ \Gamma $ is defined analogously. A solution that cannot be extended is called non-extendible.

If the function $ f ( t, x) $ is continuous in $ G $, then every solution (1) of (2) can be either extended forwards (backward) or indefinitely or up to the boundary $ \Gamma $. In other words, every solution of (2) can be extended to a non-extendible solution. If the partial derivatives

$$ \tag{3 } \frac{\partial f _ {i} }{\partial x _ {j} } ,\ \ i, j = 1 \dots n , $$

are continuous in $ G $, then such a prolongation is unique.

An interval $ J $ is called a maximal interval of existence of a solution of (2) if the solution cannot be extended to a larger interval. For any solution of a linear system

$$ \dot{x} _ {i} = \ \sum _ {j = 1 } ^ { n } a _ {ij} ( t) x _ {j} + f _ {i} ( t),\ \ 1 \leq i \leq n, $$

with coefficients $ a _ {ij} ( t) $ and right-hand sides $ f _ {i} ( t) $, $ 1 \leq i, j \leq n $, that are continuous on an interval $ J $, the maximal interval of existence of a solution coincides with $ J $. For solutions of a non-linear system the maximal intervals of existence may differ for different solutions, and determining them is a difficult task. E.g. for the solution to the Cauchy problem

$$ \dot{x} = x ^ {2} ,\ \ x ( t _ {0} ) = x _ {0} , $$

one has

$$ J = ( t _ {0} + x _ {0} ^ {-} 1 , \infty ) $$

if $ x _ {0} < 0 $,

$$ J = (- \infty , t _ {0} + x _ {0} ^ {-} 1 ) $$

if $ x _ {0} > 0 $, and

$$ J = (- \infty , \infty ) $$

if $ x _ {0} = 0 $.

A sufficient condition under which one can indicate the maximal interval of existence of a solution is, e.g., Wintner's theorem: Suppose that the function $ f ( t, x) $ is continuous for $ t \in J = [ t _ {0} , t _ {0} + a] $, $ x \in \mathbf R ^ {n} $, and that it satisfies in this domain the estimate

$$ | f ( t, x) | \leq L ( | x | ), $$

where $ L ( r) $ is a function continuous for $ r \geq 0 $, $ L ( r) > 0 $ and for some $ \delta $, $ 0 \leq \delta < \infty $,

$$ \int\limits _ \delta ^ \infty \frac{dr }{L ( r) } = + \infty . $$

Then every solution of (2) exists on the whole of $ J $.

This theorem also holds for $ J = [ t _ {0} , \infty ) $. Sufficient conditions for indefinite extendibility of a solution are of great interest. E.g., if $ f ( t, x) $ and its partial derivatives (3) are continuous for $ t _ {0} \leq t < \infty $, $ x \in \mathbf R ^ {n} $, and if for these values of $ t, x $ the estimates

$$ \left | \frac{\partial f _ {i} }{\partial x _ {j} } \right | \leq c ( t) < \infty ,\ \ i, j = 1 \dots n, $$

hold, then the solution of (2) with $ x ( t _ {0} ) = x _ {0} $ exists for $ t _ {0} \leq t < \infty $, for any $ x _ {0} \in \mathbf R ^ {n} $.

Consider the Cauchy problem

$$ \tag{4 } \dot{x} = f ( x),\ \ x ( t _ {0} ) = x _ {0} , $$

for an autonomous system, where $ f ( x) $ is continuously differentiable in a domain $ G \subset \mathbf R _ {x} ^ {n} $. If, as $ t $ grows, the phase trajectory of the solution $ x = \phi ( t) $ of (4) remains in a compact subset $ F \subset G $, then this solution can be extended to the semi-axis $ t _ {0} \leq t < \infty $.

References

[1] L.S. Pontryagin, "Ordinary differential equations" , Addison-Wesley (1962) (Translated from Russian)
[2] V.I. Arnol'd, "Ordinary differential equations" , M.I.T. (1973) (Translated from Russian)
[3] V.V. Nemytskii, V.V. Stepanov, "Qualitative theory of differential equations" , Princeton Univ. Press (1960) (Translated from Russian)
[4] E.A. Coddington, N. Levinson, "Theory of ordinary differential equations" , McGraw-Hill (1955) pp. Chapts. 13–17
[5] P. Hartman, "Ordinary differential equations" , Birkhäuser (1982)
[6] L. Cesari, "Asymptotic behavior and stability problems in ordinary differential equations" , Springer (1959)
[7] A. Wintner, "The non-local existence problem of ordinary differential equations" Amer. J. Math. , 67 (1945) pp. 277–284

Comments

Instead of prolongation of solutions, continuation of solutions is nowadays mostly used.

How to Cite This Entry:
Prolongation of solutions of differential equations. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Prolongation_of_solutions_of_differential_equations&oldid=48331
This article was adapted from an original article by M.V. Fedoryuk (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article