Difference between revisions of "Predicate variable"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | p0743801.png | ||
+ | $#A+1 = 15 n = 0 | ||
+ | $#C+1 = 15 : ~/encyclopedia/old_files/data/P074/P.0704380 Predicate variable, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''second-order variable'' | ''second-order variable'' | ||
A variable whose values can be predicates (cf. [[Predicate|Predicate]]). In the formal structure of an axiomatic system, predicate variables differ from individual variables (cf. [[Individual variable|Individual variable]]) by the fact that formulas may be substituted for them. Thus, in second-order predicate calculus, if in the axiom | A variable whose values can be predicates (cf. [[Predicate|Predicate]]). In the formal structure of an axiomatic system, predicate variables differ from individual variables (cf. [[Individual variable|Individual variable]]) by the fact that formulas may be substituted for them. Thus, in second-order predicate calculus, if in the axiom | ||
− | + | $$ | |
+ | \forall x \phi ( x) \rightarrow \phi ( t), | ||
+ | $$ | ||
− | + | $ x $ | |
+ | is a predicate variable for $ n $- | ||
+ | place predicates, then any formula with $ n $ | ||
+ | distinguished variables may be taken for $ t $. | ||
+ | Here the result of substituting a formula $ t $ | ||
+ | with $ n $ | ||
+ | distinguished variables $ z _ {1} \dots z _ {n} $ | ||
+ | for the predicate variable $ x $ | ||
+ | in the atomic formula $ x ( y _ {1} \dots y _ {n} ) $, | ||
+ | where $ y _ {1} \dots y _ {n} $ | ||
+ | are individual constants, is the formula $ t ( y _ {1} | z _ {1} \dots y _ {n} | z _ {n} ) $ | ||
+ | obtained from $ t $ | ||
+ | by simultaneously replacing the free occurrences of $ z _ {1} \dots z _ {n} $ | ||
+ | by $ y _ {1} \dots y _ {n} $, | ||
+ | respectively. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Church, "Introduction to mathematical logic" , '''1''' , Princeton Univ. Press (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Takeuti, "Proof theory" , North-Holland (1987)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A. Church, "Introduction to mathematical logic" , '''1''' , Princeton Univ. Press (1956)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G. Takeuti, "Proof theory" , North-Holland (1987)</TD></TR></table> |
Latest revision as of 08:07, 6 June 2020
second-order variable
A variable whose values can be predicates (cf. Predicate). In the formal structure of an axiomatic system, predicate variables differ from individual variables (cf. Individual variable) by the fact that formulas may be substituted for them. Thus, in second-order predicate calculus, if in the axiom
$$ \forall x \phi ( x) \rightarrow \phi ( t), $$
$ x $ is a predicate variable for $ n $- place predicates, then any formula with $ n $ distinguished variables may be taken for $ t $. Here the result of substituting a formula $ t $ with $ n $ distinguished variables $ z _ {1} \dots z _ {n} $ for the predicate variable $ x $ in the atomic formula $ x ( y _ {1} \dots y _ {n} ) $, where $ y _ {1} \dots y _ {n} $ are individual constants, is the formula $ t ( y _ {1} | z _ {1} \dots y _ {n} | z _ {n} ) $ obtained from $ t $ by simultaneously replacing the free occurrences of $ z _ {1} \dots z _ {n} $ by $ y _ {1} \dots y _ {n} $, respectively.
References
[1] | A. Church, "Introduction to mathematical logic" , 1 , Princeton Univ. Press (1956) |
[2] | G. Takeuti, "Proof theory" , North-Holland (1987) |
Predicate variable. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Predicate_variable&oldid=48278