Namespaces
Variants
Actions

Difference between revisions of "Positive element"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''of an algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p0739201.png" /> with an involution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p0739202.png" />''
+
<!--
 +
p0739201.png
 +
$#A+1 = 20 n = 2
 +
$#C+1 = 20 : ~/encyclopedia/old_files/data/P073/P.0703920 Positive element
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
An element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p0739203.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p0739204.png" /> of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p0739205.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p0739206.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p0739207.png" /> of positive elements in a Banach <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p0739208.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p0739209.png" /> contains the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p07392010.png" /> of squares of the Hermitian elements, which in turn contains the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p07392011.png" /> of all Hermitian elements with positive spectrum (cf. [[Spectrum of an element|Spectrum of an element]]), but in general it does not contain the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p07392012.png" /> of all Hermitian elements with non-negative spectrum. The condition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p07392013.png" /> defines the class of completely-symmetric (or Hermitian) Banach <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p07392014.png" />-algebras. For a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p07392015.png" />-algebra to be completely symmetric it is necessary and sufficient that all Hermitian elements in it have real spectrum. The equality <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p07392016.png" /> holds if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p07392017.png" /> is a [[C*-algebra|<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p07392018.png" />-algebra]]. In that case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p07392019.png" /> is a reproducing cone (cf. [[Semi-ordered space|Semi-ordered space]]) in the space of all Hermitian elements of the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p07392020.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
''of an algebra  $  A $
 +
with an involution  $  {}  ^ {*} $''
 +
 
 +
An element $  x $
 +
of $  A $
 +
of the form $  x = y  ^ {*} y $,  
 +
where $  y \in A $.  
 +
The set $  P( A) $
 +
of positive elements in a Banach $  * $-
 +
algebra $  A $
 +
contains the set $  Q( A) $
 +
of squares of the Hermitian elements, which in turn contains the set $  P _ {0} ( A)  ^ {+} $
 +
of all Hermitian elements with positive spectrum (cf. [[Spectrum of an element|Spectrum of an element]]), but in general it does not contain the set $  A  ^ {+} $
 +
of all Hermitian elements with non-negative spectrum. The condition $  P( A) \subset  A  ^ {+} $
 +
defines the class of completely-symmetric (or Hermitian) Banach $  * $-
 +
algebras. For a $  * $-
 +
algebra to be completely symmetric it is necessary and sufficient that all Hermitian elements in it have real spectrum. The equality $  P( A) = A  ^ {+} $
 +
holds if and only if $  A $
 +
is a [[C*-algebra| $  C  ^ {*} $-
 +
algebra]]. In that case $  P( A) $
 +
is a reproducing cone (cf. [[Semi-ordered space|Semi-ordered space]]) in the space of all Hermitian elements of the algebra $  A $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.A. Naimark,  "Normed rings" , Reidel  (1984)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J. Dixmier,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p07392021.png" /> algebras" , North-Holland  (1977)  (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D.N. Raikov,  ''Dokl. Akad. Nauk. SSSR'' , '''54''' :  5  (1946)  pp. 391–394</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V. Pták,  "On the spectral radius in Banach algebras with involution"  ''Bull. London Math. Soc.'' , '''2'''  (1970)  pp. 327–334</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  T.W. Palmer,  "Hermitian Banach <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p07392022.png" />-algebras"  ''Bull. Amer. Math. Soc.'' , '''78'''  (1972)  pp. 522–524</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.A. Naimark,  "Normed rings" , Reidel  (1984)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J. Dixmier,  "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p07392021.png" /> algebras" , North-Holland  (1977)  (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  D.N. Raikov,  ''Dokl. Akad. Nauk. SSSR'' , '''54''' :  5  (1946)  pp. 391–394</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  V. Pták,  "On the spectral radius in Banach algebras with involution"  ''Bull. London Math. Soc.'' , '''2'''  (1970)  pp. 327–334</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  T.W. Palmer,  "Hermitian Banach <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073920/p07392022.png" />-algebras"  ''Bull. Amer. Math. Soc.'' , '''78'''  (1972)  pp. 522–524</TD></TR></table>

Latest revision as of 08:07, 6 June 2020


of an algebra $ A $ with an involution $ {} ^ {*} $

An element $ x $ of $ A $ of the form $ x = y ^ {*} y $, where $ y \in A $. The set $ P( A) $ of positive elements in a Banach $ * $- algebra $ A $ contains the set $ Q( A) $ of squares of the Hermitian elements, which in turn contains the set $ P _ {0} ( A) ^ {+} $ of all Hermitian elements with positive spectrum (cf. Spectrum of an element), but in general it does not contain the set $ A ^ {+} $ of all Hermitian elements with non-negative spectrum. The condition $ P( A) \subset A ^ {+} $ defines the class of completely-symmetric (or Hermitian) Banach $ * $- algebras. For a $ * $- algebra to be completely symmetric it is necessary and sufficient that all Hermitian elements in it have real spectrum. The equality $ P( A) = A ^ {+} $ holds if and only if $ A $ is a $ C ^ {*} $- algebra. In that case $ P( A) $ is a reproducing cone (cf. Semi-ordered space) in the space of all Hermitian elements of the algebra $ A $.

References

[1] M.A. Naimark, "Normed rings" , Reidel (1984) (Translated from Russian)
[2] J. Dixmier, " algebras" , North-Holland (1977) (Translated from French)
[3] D.N. Raikov, Dokl. Akad. Nauk. SSSR , 54 : 5 (1946) pp. 391–394
[4] V. Pták, "On the spectral radius in Banach algebras with involution" Bull. London Math. Soc. , 2 (1970) pp. 327–334
[5] T.W. Palmer, "Hermitian Banach -algebras" Bull. Amer. Math. Soc. , 78 (1972) pp. 522–524
How to Cite This Entry:
Positive element. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Positive_element&oldid=48253
This article was adapted from an original article by V.S. Shul'man (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article