Difference between revisions of "Pontryagin number"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p0737901.png | ||
+ | $#A+1 = 64 n = 0 | ||
+ | $#C+1 = 64 : ~/encyclopedia/old_files/data/P073/P.0703790 Pontryagin number | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A [[Characteristic number|characteristic number]] defined for closed oriented manifolds and assuming rational values. Let $ x \in H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) $ | |
+ | be an arbitrary (not necessarily homogeneous) stable [[Characteristic class|characteristic class]]. For a closed oriented manifold $ M $ | ||
+ | the rational number $ x [ M ] = \langle x ( \tau M ) , [ M] \rangle $ | ||
+ | is called the Pontryagin number of $ M $ | ||
+ | corresponding to $ x $; | ||
+ | here $ \tau M $ | ||
+ | is the tangent bundle and $ [ M] $ | ||
+ | is the [[Fundamental class|fundamental class]] of $ M $. | ||
+ | The Pontryagin number $ x [ M] $ | ||
+ | depends only on the homogeneous component of degree $ \mathop{\rm dim} M $ | ||
+ | of the class $ x $. | ||
+ | Let $ \omega = \{ i _ {1} \dots i _ {k} \} $ | ||
+ | be a partition of $ n $, | ||
+ | i.e. a set of non-negative integers $ i _ {1} \dots i _ {k} $ | ||
+ | such that $ i _ {1} + \dots + i _ {k} = n $ | ||
+ | and let $ p _ \omega = p _ {i _ {1} } \dots p _ {i _ {k} } \in H ^ {4n} ( \mathop{\rm BO} ) $. | ||
+ | The rational numbers $ p _ \omega [ M] $ | ||
+ | are defined for a closed manifold $ M $ | ||
+ | of dimension $ 4n $ | ||
+ | and all partitions $ \omega $ | ||
+ | of the number $ n $. | ||
− | + | The Pontryagin numbers $ x[ M] , x [ N] $ | |
+ | of two bordant (in the oriented sense, cf. [[Bordism|Bordism]]) manifolds $ M , N $ | ||
+ | are equal: $ x [ M] = x [ N] $( | ||
+ | Pontryagin's theorem). | ||
+ | |||
+ | According to this theorem each characteristic class $ x \in H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) $ | ||
+ | induces a homomorphism $ x [ {} ] : \Omega _ {*} ^ { \mathop{\rm SO} } \rightarrow \mathbf Q $, | ||
+ | and each element $ [ M] \in \Omega _ {*} ^ { \mathop{\rm SO} } $ | ||
+ | induces a homomorphism $ H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) \rightarrow \mathbf Q $, | ||
+ | $ x \rightarrow x [ M] $. | ||
+ | In other words, there is a mapping | ||
+ | |||
+ | $$ | ||
+ | \phi : \Omega _ {*} ^ { \mathop{\rm SO} } \rightarrow \mathop{\rm Hom} ( H ^ {**} | ||
+ | ( \mathop{\rm BO} ; \mathbf Q ) ; \mathbf Q ) . | ||
+ | $$ | ||
If all Pontryagin numbers and Stiefel numbers (cf. [[Stiefel number|Stiefel number]]) of two oriented closed manifolds coincide, then these manifolds are bordant (in the oriented sense). | If all Pontryagin numbers and Stiefel numbers (cf. [[Stiefel number|Stiefel number]]) of two oriented closed manifolds coincide, then these manifolds are bordant (in the oriented sense). | ||
− | A problem similar to the Milnor–Hirzebruch problem for quasi-complex manifolds consists in describing the image of the mapping | + | A problem similar to the Milnor–Hirzebruch problem for quasi-complex manifolds consists in describing the image of the mapping $ \phi $. |
+ | The solution of this problem is based on the consideration of Pontryagin numbers in [[K-theory| $ K $- | ||
+ | theory]] corresponding to the Pontryagin classes (cf. [[Pontryagin class|Pontryagin class]]) $ \pi _ {i} $ | ||
+ | in $ K $- | ||
+ | theory. Let $ \omega = \{ i _ {1} \dots i _ {n} \} $ | ||
+ | be a set of non-negative integers, let $ S _ \omega ( p) $ | ||
+ | and $ S _ \omega ( e _ {p} ) $ | ||
+ | be the characteristic classes defined by the symmetric series | ||
− | + | $$ | |
+ | S ^ \omega ( x _ {1} ^ {2} \dots x _ {n} ^ {2} ) \textrm{ and } \ | ||
+ | S ^ \omega ( e ^ {x _ {1} } + e ^ {- x _ {1} } - 2 \dots | ||
+ | e ^ {x _ {n} } + e ^ {- x _ {n} } - 2 ) , | ||
+ | $$ | ||
− | respectively; here | + | respectively; here $ S ^ \omega ( t _ {1} \dots t _ {n} ) $ |
+ | is the minimal symmetric polynomial containing the monomials $ t _ {1} ^ {i _ {1} } \dots t _ {k} ^ {i _ {k} } $, | ||
+ | $ n \geq i _ {1} + \dots + i _ {k} $. | ||
+ | Let $ B _ {*} \subset \mathop{\rm Hom} ( H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ); \mathbf Q ) $ | ||
+ | be a set of homomorphisms $ b : H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) \rightarrow \mathbf Q $ | ||
+ | for which $ b ( S _ \omega ( p) ) \in \mathbf Z $, | ||
+ | $ b ( S _ \omega ( e _ {p} ) L ) \in \mathbf Z [ 1/2] $ | ||
+ | for all tuples $ \omega $. | ||
+ | Then the image of the homomorphism | ||
− | + | $$ | |
+ | \phi : \Omega _ {*} ^ { \mathop{\rm SO} } \rightarrow \mathop{\rm Hom} ( H ^ {**} | ||
+ | ( \mathop{\rm BO} ; \mathbf Q ) ; \mathbf Q ) | ||
+ | $$ | ||
− | coincides with | + | coincides with $ B _ {*} $( |
+ | the Stong–Hattori theorem). | ||
− | The characteristic numbers | + | The characteristic numbers $ L [ M] $ |
+ | and $ \widehat{A} [ M] $ | ||
+ | corresponding to the classes $ L , \widehat{A} \in H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) $ | ||
+ | are called the $ L $- | ||
+ | genus and the $ \widehat{A} $- | ||
+ | genus of $ M $, | ||
+ | respectively. | ||
− | For a closed manifold | + | For a closed manifold $ M $ |
+ | of dimension divisible by $ 4 $ | ||
+ | the equality $ L [ M] = I ( M) $ | ||
+ | holds, where $ I ( M) $ | ||
+ | is the [[Signature|signature]] of the manifold, i.e. the signature of the quadratic intersection form defined on $ H _ {n/2} ( M) $, | ||
+ | $ n = \mathop{\rm dim} M $( | ||
+ | Hirzebruch's theorem). For a closed spin manifold $ M $ | ||
+ | of even dimension the spinor index of $ M $, | ||
+ | i.e. the index of the Dirac operator on $ M $, | ||
+ | coincides with $ \widehat{A} [ M] $. | ||
For references see [[Pontryagin class|Pontryagin class]]. | For references see [[Pontryagin class|Pontryagin class]]. |
Latest revision as of 08:07, 6 June 2020
A characteristic number defined for closed oriented manifolds and assuming rational values. Let $ x \in H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) $
be an arbitrary (not necessarily homogeneous) stable characteristic class. For a closed oriented manifold $ M $
the rational number $ x [ M ] = \langle x ( \tau M ) , [ M] \rangle $
is called the Pontryagin number of $ M $
corresponding to $ x $;
here $ \tau M $
is the tangent bundle and $ [ M] $
is the fundamental class of $ M $.
The Pontryagin number $ x [ M] $
depends only on the homogeneous component of degree $ \mathop{\rm dim} M $
of the class $ x $.
Let $ \omega = \{ i _ {1} \dots i _ {k} \} $
be a partition of $ n $,
i.e. a set of non-negative integers $ i _ {1} \dots i _ {k} $
such that $ i _ {1} + \dots + i _ {k} = n $
and let $ p _ \omega = p _ {i _ {1} } \dots p _ {i _ {k} } \in H ^ {4n} ( \mathop{\rm BO} ) $.
The rational numbers $ p _ \omega [ M] $
are defined for a closed manifold $ M $
of dimension $ 4n $
and all partitions $ \omega $
of the number $ n $.
The Pontryagin numbers $ x[ M] , x [ N] $ of two bordant (in the oriented sense, cf. Bordism) manifolds $ M , N $ are equal: $ x [ M] = x [ N] $( Pontryagin's theorem).
According to this theorem each characteristic class $ x \in H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) $ induces a homomorphism $ x [ {} ] : \Omega _ {*} ^ { \mathop{\rm SO} } \rightarrow \mathbf Q $, and each element $ [ M] \in \Omega _ {*} ^ { \mathop{\rm SO} } $ induces a homomorphism $ H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) \rightarrow \mathbf Q $, $ x \rightarrow x [ M] $. In other words, there is a mapping
$$ \phi : \Omega _ {*} ^ { \mathop{\rm SO} } \rightarrow \mathop{\rm Hom} ( H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) ; \mathbf Q ) . $$
If all Pontryagin numbers and Stiefel numbers (cf. Stiefel number) of two oriented closed manifolds coincide, then these manifolds are bordant (in the oriented sense).
A problem similar to the Milnor–Hirzebruch problem for quasi-complex manifolds consists in describing the image of the mapping $ \phi $. The solution of this problem is based on the consideration of Pontryagin numbers in $ K $- theory corresponding to the Pontryagin classes (cf. Pontryagin class) $ \pi _ {i} $ in $ K $- theory. Let $ \omega = \{ i _ {1} \dots i _ {n} \} $ be a set of non-negative integers, let $ S _ \omega ( p) $ and $ S _ \omega ( e _ {p} ) $ be the characteristic classes defined by the symmetric series
$$ S ^ \omega ( x _ {1} ^ {2} \dots x _ {n} ^ {2} ) \textrm{ and } \ S ^ \omega ( e ^ {x _ {1} } + e ^ {- x _ {1} } - 2 \dots e ^ {x _ {n} } + e ^ {- x _ {n} } - 2 ) , $$
respectively; here $ S ^ \omega ( t _ {1} \dots t _ {n} ) $ is the minimal symmetric polynomial containing the monomials $ t _ {1} ^ {i _ {1} } \dots t _ {k} ^ {i _ {k} } $, $ n \geq i _ {1} + \dots + i _ {k} $. Let $ B _ {*} \subset \mathop{\rm Hom} ( H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ); \mathbf Q ) $ be a set of homomorphisms $ b : H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) \rightarrow \mathbf Q $ for which $ b ( S _ \omega ( p) ) \in \mathbf Z $, $ b ( S _ \omega ( e _ {p} ) L ) \in \mathbf Z [ 1/2] $ for all tuples $ \omega $. Then the image of the homomorphism
$$ \phi : \Omega _ {*} ^ { \mathop{\rm SO} } \rightarrow \mathop{\rm Hom} ( H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) ; \mathbf Q ) $$
coincides with $ B _ {*} $( the Stong–Hattori theorem).
The characteristic numbers $ L [ M] $ and $ \widehat{A} [ M] $ corresponding to the classes $ L , \widehat{A} \in H ^ {**} ( \mathop{\rm BO} ; \mathbf Q ) $ are called the $ L $- genus and the $ \widehat{A} $- genus of $ M $, respectively.
For a closed manifold $ M $ of dimension divisible by $ 4 $ the equality $ L [ M] = I ( M) $ holds, where $ I ( M) $ is the signature of the manifold, i.e. the signature of the quadratic intersection form defined on $ H _ {n/2} ( M) $, $ n = \mathop{\rm dim} M $( Hirzebruch's theorem). For a closed spin manifold $ M $ of even dimension the spinor index of $ M $, i.e. the index of the Dirac operator on $ M $, coincides with $ \widehat{A} [ M] $.
For references see Pontryagin class.
Pontryagin number. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pontryagin_number&oldid=48242