Namespaces
Variants
Actions

Difference between revisions of "Poly-analytic function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
''of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p0735002.png" />''
+
<!--
 +
p0735002.png
 +
$#A+1 = 37 n = 0
 +
$#C+1 = 37 : ~/encyclopedia/old_files/data/P073/P.0703500 Poly\AAhanalytic function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
A complex function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p0735003.png" /> of the real variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p0735004.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p0735005.png" />, or, which is equivalent, of the complex variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p0735006.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p0735007.png" />, in a plane domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p0735008.png" /> which can be represented as
+
{{TEX|auto}}
 +
{{TEX|done}}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p0735009.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
''of order  $  m $''
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350011.png" />, are complex-analytic functions in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350012.png" />. In other words, a poly-analytic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350013.png" /> of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350014.png" /> can be defined as a function which in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350015.png" /> has continuous partial derivatives with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350017.png" />, or with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350018.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350019.png" />, up to order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350020.png" /> inclusive and which everywhere in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350021.png" /> satisfies the generalized Cauchy–Riemann condition:
+
A complex function $  w = u + iv $
 +
of the real variables  $  x $
 +
and $  y $,  
 +
or, which is equivalent, of the complex variables  $  z = x + iy $
 +
and $  \overline{z}\; = x - iy $,  
 +
in a plane domain  $  D $
 +
which can be represented as
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350022.png" /></td> </tr></table>
+
$$ \tag{1 }
 +
= f( z, \overline{z}\; = \sum _ { k= } 0 ^ { m- }  1 {\overline{z}\; } {}  ^ {k} f _ {k} ( z),
 +
$$
  
For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350023.png" /> one obtains analytic functions (cf. [[Analytic function|Analytic function]]).
+
where  $  f _ {k} ( z) $,
 +
$  k = 0 \dots m- 1 $,
 +
are complex-analytic functions in  $  D $.  
 +
In other words, a poly-analytic function $  w $
 +
of order  $  m $
 +
can be defined as a function which in  $  D $
 +
has continuous partial derivatives with respect to  $  x $
 +
and  $  y $,
 +
or with respect to  $  z $
 +
and  $  \overline{z}\; $,
 +
up to order  $  m $
 +
inclusive and which everywhere in  $  D $
 +
satisfies the generalized Cauchy–Riemann condition:
  
For a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350024.png" /> to be the real (or imaginary) part of some poly-analytic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350025.png" /> in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350026.png" />, it is necessary and sufficient that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350027.png" /> be a [[Poly-harmonic function|poly-harmonic function]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350028.png" />. One can transfer to poly-analytic functions certain classical properties of analytic functions, with appropriate changes (see [[#References|[1]]]).
+
$$
  
A poly-analytic function of multi-order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350029.png" /> in the complex variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350030.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350031.png" /> in a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350032.png" /> of the complex space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350034.png" />, is a function of the form
+
\frac{\partial  ^ {m} w }{\partial  {\overline{z}\; } {}  ^ {m} }
 +
  = 0 .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350035.png" /></td> </tr></table>
+
For  $  m = 1 $
 +
one obtains analytic functions (cf. [[Analytic function|Analytic function]]).
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350036.png" /> are analytic functions of the variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350037.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073500/p07350038.png" />.
+
For a function  $  u = u( x, y) $
 +
to be the real (or imaginary) part of some poly-analytic function  $  w = u + iv $
 +
in a domain  $  D $,
 +
it is necessary and sufficient that  $  u $
 +
be a [[Poly-harmonic function|poly-harmonic function]] in  $  D $.  
 +
One can transfer to poly-analytic functions certain classical properties of analytic functions, with appropriate changes (see [[#References|[1]]]).
 +
 
 +
A poly-analytic function of multi-order  $  m = ( m _ {1} \dots m _ {n} ) $
 +
in the complex variables $  z _ {1} \dots z _ {n} $
 +
and  $  \overline{z}\; _ {1} \dots \overline{z}\; _ {n} $
 +
in a domain  $  D $
 +
of the complex space  $  \mathbf C  ^ {n} $,
 +
$  n \geq  1 $,
 +
is a function of the form
 +
 
 +
$$
 +
= \sum _ {k _ {1} \dots k _ {n} = 0 } ^ { {m } _ {1} - 1 \dots m _ {n} - 1 } \overline{z}\; {} _ {1} ^ {k _ {1} } \dots \overline{z}\; {} _ {n} ^ {k _ {n} } f _ {k _ {1}  \dots k _ {n} } ( z _ {1} \dots z _ {n} ),
 +
$$
 +
 
 +
where  $  f _ {k _ {1}  \dots k _ {n} } $
 +
are analytic functions of the variables  $  z _ {1} \dots z _ {n} $
 +
in $  D $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.B. Balk,  M.F. Zuev,  "On polyanalytic functions"  ''Russian Math. Surveys'' , '''25''' :  5  (1970)  pp. 201–223  ''Uspekhi Mat. Nauk'' , '''25''' :  5  (1970)  pp. 203–226</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  M.B. Balk,  M.F. Zuev,  "On polyanalytic functions"  ''Russian Math. Surveys'' , '''25''' :  5  (1970)  pp. 201–223  ''Uspekhi Mat. Nauk'' , '''25''' :  5  (1970)  pp. 203–226</TD></TR></table>

Revision as of 08:06, 6 June 2020


of order $ m $

A complex function $ w = u + iv $ of the real variables $ x $ and $ y $, or, which is equivalent, of the complex variables $ z = x + iy $ and $ \overline{z}\; = x - iy $, in a plane domain $ D $ which can be represented as

$$ \tag{1 } w = f( z, \overline{z}\; ) = \sum _ { k= } 0 ^ { m- } 1 {\overline{z}\; } {} ^ {k} f _ {k} ( z), $$

where $ f _ {k} ( z) $, $ k = 0 \dots m- 1 $, are complex-analytic functions in $ D $. In other words, a poly-analytic function $ w $ of order $ m $ can be defined as a function which in $ D $ has continuous partial derivatives with respect to $ x $ and $ y $, or with respect to $ z $ and $ \overline{z}\; $, up to order $ m $ inclusive and which everywhere in $ D $ satisfies the generalized Cauchy–Riemann condition:

$$ \frac{\partial ^ {m} w }{\partial {\overline{z}\; } {} ^ {m} } = 0 . $$

For $ m = 1 $ one obtains analytic functions (cf. Analytic function).

For a function $ u = u( x, y) $ to be the real (or imaginary) part of some poly-analytic function $ w = u + iv $ in a domain $ D $, it is necessary and sufficient that $ u $ be a poly-harmonic function in $ D $. One can transfer to poly-analytic functions certain classical properties of analytic functions, with appropriate changes (see [1]).

A poly-analytic function of multi-order $ m = ( m _ {1} \dots m _ {n} ) $ in the complex variables $ z _ {1} \dots z _ {n} $ and $ \overline{z}\; _ {1} \dots \overline{z}\; _ {n} $ in a domain $ D $ of the complex space $ \mathbf C ^ {n} $, $ n \geq 1 $, is a function of the form

$$ w = \sum _ {k _ {1} \dots k _ {n} = 0 } ^ { {m } _ {1} - 1 \dots m _ {n} - 1 } \overline{z}\; {} _ {1} ^ {k _ {1} } \dots \overline{z}\; {} _ {n} ^ {k _ {n} } f _ {k _ {1} \dots k _ {n} } ( z _ {1} \dots z _ {n} ), $$

where $ f _ {k _ {1} \dots k _ {n} } $ are analytic functions of the variables $ z _ {1} \dots z _ {n} $ in $ D $.

References

[1] M.B. Balk, M.F. Zuev, "On polyanalytic functions" Russian Math. Surveys , 25 : 5 (1970) pp. 201–223 Uspekhi Mat. Nauk , 25 : 5 (1970) pp. 203–226
How to Cite This Entry:
Poly-analytic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poly-analytic_function&oldid=48231
This article was adapted from an original article by E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article