Difference between revisions of "Poisson algebra"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p1101701.png | ||
+ | $#A+1 = 47 n = 0 | ||
+ | $#C+1 = 47 : ~/encyclopedia/old_files/data/P110/P.1100170 Poisson algebra | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
+ | |||
+ | An [[Algebra|algebra]], usually over the field of real or complex numbers, equipped with a [[Bilinear mapping|bilinear mapping]] satisfying the properties of the usual [[Poisson brackets|Poisson brackets]] of functions. Let $ A $ | ||
+ | be an associative commutative algebra over a commutative ring $ R $( | ||
+ | cf. [[Commutative algebra|Commutative algebra]]; [[Commutative ring|Commutative ring]]; [[Associative rings and algebras|Associative rings and algebras]]). A Poisson algebra structure on $ A $ | ||
+ | is defined by an $ R $- | ||
+ | bilinear skew-symmetric mapping $ {\{ \cdot, \cdot \} } : {A \times A } \rightarrow A $ | ||
+ | such that | ||
+ | |||
+ | i) $ ( A, \{ \cdot, \cdot \} ) $ | ||
+ | is a [[Lie algebra|Lie algebra]] over $ R $; | ||
ii) the Leibniz rule is satisfied, namely, | ii) the Leibniz rule is satisfied, namely, | ||
− | + | $$ | |
+ | \{ a,bc \} = \{ a,b \} c + b \{ a,c \} | ||
+ | $$ | ||
− | for all | + | for all $ a, b, c \in A $. |
+ | The element $ \{ a,b \} $ | ||
+ | is called the Poisson bracket of $ a $ | ||
+ | and $ b $. | ||
+ | The main example is that of the algebra of smooth functions on a Poisson manifold [[#References|[a5]]] (cf. also [[Symplectic structure|Symplectic structure]]). | ||
− | On a Poisson algebra, one can define [[#References|[a12]]] a skew-symmetric | + | On a Poisson algebra, one can define [[#References|[a12]]] a skew-symmetric $ A $- |
+ | bilinear mapping, $ P $, | ||
+ | which generalizes the Poisson bivector on Poisson manifolds, mapping a pair of Kähler (or formal) differentials on $ A $ | ||
+ | to the algebra $ A $ | ||
+ | itself. There exists a unique $ R $- | ||
+ | bilinear bracket, $ [ \cdot, \cdot ] _ {p} $ | ||
+ | on the $ A $- | ||
+ | module $ \Omega ^ {1} ( A ) $ | ||
+ | of Kähler differentials satisfying $ [ da,db ] _ {P} = d \{ a,b \} $ | ||
+ | and lending it the structure of a Lie–Rinehart algebra, $ [ da,fdb ] _ {P} = f [ da,db ] _ {P} + P ^ \srp ( da ) ( f ) db $, | ||
+ | for all $ a, b, f \in A $. | ||
+ | (Here, $ P ^ \srp $ | ||
+ | is the adjoint of $ P $, | ||
+ | mapping the Kähler differentials into the derivations of $ A $; | ||
+ | cf. [[Adjoint operator|Adjoint operator]].) The Poisson cohomology (cf. [[Cohomology|Cohomology]]) of $ A $ | ||
+ | is then defined and, when $ \Omega ^ {1} ( A ) $ | ||
+ | is projective as an $ A $- | ||
+ | module, is equal to the cohomology of the complex of alternating $ A $- | ||
+ | linear mappings on $ \Omega ^ {1} ( A ) $ | ||
+ | with values in $ A $, | ||
+ | with the differential [[#References|[a1]]] defined by the Lie–Rinehart algebra structure. In the case of the algebra of functions on a [[Differentiable manifold|differentiable manifold]], the Poisson cohomology coincides with the cohomology of the complex of multivectors, with differential $ d _ {P} = [ P, \cdot ] $, | ||
+ | where $ P $ | ||
+ | is the Poisson bivector and $ [ \cdot, \cdot ] $ | ||
+ | is the Schouten bracket. | ||
− | In a canonical ring [[#References|[a4]]], the Poisson bracket is defined by a given mapping | + | In a canonical ring [[#References|[a4]]], the Poisson bracket is defined by a given mapping $ P ^ \srp $. |
+ | Dirac structures [[#References|[a13]]] on complexes over Lie algebras are a generalization of the Poisson algebras, adapted to the theory of infinite-dimensional Hamiltonian systems, where the ring of functions is replaced by the vector space of functionals. | ||
− | In the category of | + | In the category of $ \mathbf Z $- |
+ | graded algebras, there are even and odd Poisson algebras, called graded Poisson algebras and Gerstenhaber algebras, respectively. Let $ A = \oplus A ^ {i} $ | ||
+ | be an associative, graded commutative algebra. A graded Poisson (respectively, Gerstenhaber) algebra structure on $ A $ | ||
+ | is a graded Lie algebra structure (cf. [[Lie algebra, graded|Lie algebra, graded]]) $ \{ \cdot, \cdot \} $( | ||
+ | respectively, where the grading is shifted by $ 1 $), | ||
+ | such that a graded version of the Leibniz rule holds: for each $ a \in A ^ {i} $, | ||
+ | $ \{ a, \cdot \} $ | ||
+ | is a derivation of degree $ i $( | ||
+ | respectively, $ i + 1 $) | ||
+ | of the graded commutative algebra $ A = \oplus A ^ {i} $. | ||
+ | Examples of Gerstenhaber algebras are: the Hochschild cohomology of an associative algebra [[#References|[a2]]], in particular, the Schouten algebra of multivectors on a smooth manifold [[#References|[a3]]], the exterior algebra of a Lie algebra, the algebra of differential forms on a Poisson manifold [[#References|[a9]]], the space of sections of the exterior algebra of a Lie algebroid, the algebra of functions on an odd Poisson supermanifold of type $ ( n \mid n ) $[[#References|[a7]]]. Batalin–Vil'koviskii algebras, also called BV-algebras, are exact Gerstenhaber algebras, i.e., their Lie bracket is a coboundary in the graded Hochschild cohomology of the algebra. Such structures arise on the BRST cohomology of topological field theories [[#References|[a14]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.S. Palais, "The cohomology of Lie rings" , ''Proc. Symp. Pure Math.'' , '''3''' , Amer. Math. Soc. (1961) pp. 130–137</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Gerstenhaber, "The cohomology structure of an associative ring" ''Ann. of Math.'' , '''78''' (1963) pp. 267–288</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> W.M. Tulczyjew, "The graded Lie algebra of multivector fields and the generalized Lie derivative of forms" ''Bull. Acad. Pol. Sci., Sér. Sci. Math. Astr. Phys.'' , '''22''' (1974) pp. 937–942</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. M. Vinogradov, I.S. Krasil'shchik, "What is the Hamiltonian formalism?" ''Russian Math. Surveys'' , '''30''' : 1 (1975) pp. 177–202 (In Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A. Lichnerowicz, "Les variétés de Poisson et leurs algèbres de Lie associées" ''J. Diff. Geom.'' , '''12''' (1977) pp. 253–300</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> J. Braconnier, "Algèbres de Poisson" ''C.R. Acad. Sci. Paris'' , '''A284''' (1977) pp. 1345–1348</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> B. Kostant, "Graded manifolds, graded Lie theory and prequantization" K. Bleuler (ed.) A. Reetz (ed.) , ''Differential Geometric Methods in Mathematical Physics (Bonn, 1975)'' , ''Lecture Notes in Mathematics'' , '''570''' , Springer (1977) pp. 177–306</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> I.M. Gelfand, I.Ya. Dorfman, "Hamiltonian operators and algebraic structures related to them" ''Funct. Anal. Appl.'' , '''13''' (1979) pp. 248–262 (In Russian)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> J.-L. Koszul, "Crochet de Schouten–Nijenhuis et cohomologie" ''Astérisque, hors série, Soc. Math. France'' (1985) pp. 257–271</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> K.H. Bhaskara, K. Viswanath, "Calculus on Poisson manifolds" ''Bull. London Math. Soc.'' , '''20''' (1988) pp. 68–72</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> Y. Kosmann-Schwarzbach, F. Magri, "Poisson–Nijenhuis structures" ''Ann. Inst. H. Poincaré, Phys. Th.'' , '''53''' (1990) pp. 35–81</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> J. Huebschmann, "Poisson cohomology and quantization" ''J. Reine Angew. Math.'' , '''408''' (1990) pp. 57–113</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> I. Dorfman, "Dirac structures and integrability of nonlinear evolution equations" , Wiley (1993)</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> B.H. Lian, G.J. Zuckerman, "New perspectives on the BRST-algebraic structure of string theory" ''Comm. Math. Phys.'' , '''154''' (1993) pp. 613–646</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> Y. Kosmann-Schwarzbach, "From Poisson to Gerstenhaber algebras" ''Ann. Inst. Fourier'' , '''46''' : 5 (1996) pp. 1243–1274</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> M. Flato, M. Gerstenhaber, A.A. Voronov, "Cohomology and deformation of Leibniz pairs" ''Letters Math. Phys.'' , '''34''' (1995) pp. 77–90</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R.S. Palais, "The cohomology of Lie rings" , ''Proc. Symp. Pure Math.'' , '''3''' , Amer. Math. Soc. (1961) pp. 130–137</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M. Gerstenhaber, "The cohomology structure of an associative ring" ''Ann. of Math.'' , '''78''' (1963) pp. 267–288</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> W.M. Tulczyjew, "The graded Lie algebra of multivector fields and the generalized Lie derivative of forms" ''Bull. Acad. Pol. Sci., Sér. Sci. Math. Astr. Phys.'' , '''22''' (1974) pp. 937–942</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> A. M. Vinogradov, I.S. Krasil'shchik, "What is the Hamiltonian formalism?" ''Russian Math. Surveys'' , '''30''' : 1 (1975) pp. 177–202 (In Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> A. Lichnerowicz, "Les variétés de Poisson et leurs algèbres de Lie associées" ''J. Diff. Geom.'' , '''12''' (1977) pp. 253–300</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> J. Braconnier, "Algèbres de Poisson" ''C.R. Acad. Sci. Paris'' , '''A284''' (1977) pp. 1345–1348</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> B. Kostant, "Graded manifolds, graded Lie theory and prequantization" K. Bleuler (ed.) A. Reetz (ed.) , ''Differential Geometric Methods in Mathematical Physics (Bonn, 1975)'' , ''Lecture Notes in Mathematics'' , '''570''' , Springer (1977) pp. 177–306</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> I.M. Gelfand, I.Ya. Dorfman, "Hamiltonian operators and algebraic structures related to them" ''Funct. Anal. Appl.'' , '''13''' (1979) pp. 248–262 (In Russian)</TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> J.-L. Koszul, "Crochet de Schouten–Nijenhuis et cohomologie" ''Astérisque, hors série, Soc. Math. France'' (1985) pp. 257–271</TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> K.H. Bhaskara, K. Viswanath, "Calculus on Poisson manifolds" ''Bull. London Math. Soc.'' , '''20''' (1988) pp. 68–72</TD></TR><TR><TD valign="top">[a11]</TD> <TD valign="top"> Y. Kosmann-Schwarzbach, F. Magri, "Poisson–Nijenhuis structures" ''Ann. Inst. H. Poincaré, Phys. Th.'' , '''53''' (1990) pp. 35–81</TD></TR><TR><TD valign="top">[a12]</TD> <TD valign="top"> J. Huebschmann, "Poisson cohomology and quantization" ''J. Reine Angew. Math.'' , '''408''' (1990) pp. 57–113</TD></TR><TR><TD valign="top">[a13]</TD> <TD valign="top"> I. Dorfman, "Dirac structures and integrability of nonlinear evolution equations" , Wiley (1993)</TD></TR><TR><TD valign="top">[a14]</TD> <TD valign="top"> B.H. Lian, G.J. Zuckerman, "New perspectives on the BRST-algebraic structure of string theory" ''Comm. Math. Phys.'' , '''154''' (1993) pp. 613–646</TD></TR><TR><TD valign="top">[a15]</TD> <TD valign="top"> Y. Kosmann-Schwarzbach, "From Poisson to Gerstenhaber algebras" ''Ann. Inst. Fourier'' , '''46''' : 5 (1996) pp. 1243–1274</TD></TR><TR><TD valign="top">[a16]</TD> <TD valign="top"> M. Flato, M. Gerstenhaber, A.A. Voronov, "Cohomology and deformation of Leibniz pairs" ''Letters Math. Phys.'' , '''34''' (1995) pp. 77–90</TD></TR></table> |
Revision as of 08:06, 6 June 2020
An algebra, usually over the field of real or complex numbers, equipped with a bilinear mapping satisfying the properties of the usual Poisson brackets of functions. Let $ A $
be an associative commutative algebra over a commutative ring $ R $(
cf. Commutative algebra; Commutative ring; Associative rings and algebras). A Poisson algebra structure on $ A $
is defined by an $ R $-
bilinear skew-symmetric mapping $ {\{ \cdot, \cdot \} } : {A \times A } \rightarrow A $
such that
i) $ ( A, \{ \cdot, \cdot \} ) $ is a Lie algebra over $ R $;
ii) the Leibniz rule is satisfied, namely,
$$ \{ a,bc \} = \{ a,b \} c + b \{ a,c \} $$
for all $ a, b, c \in A $. The element $ \{ a,b \} $ is called the Poisson bracket of $ a $ and $ b $. The main example is that of the algebra of smooth functions on a Poisson manifold [a5] (cf. also Symplectic structure).
On a Poisson algebra, one can define [a12] a skew-symmetric $ A $- bilinear mapping, $ P $, which generalizes the Poisson bivector on Poisson manifolds, mapping a pair of Kähler (or formal) differentials on $ A $ to the algebra $ A $ itself. There exists a unique $ R $- bilinear bracket, $ [ \cdot, \cdot ] _ {p} $ on the $ A $- module $ \Omega ^ {1} ( A ) $ of Kähler differentials satisfying $ [ da,db ] _ {P} = d \{ a,b \} $ and lending it the structure of a Lie–Rinehart algebra, $ [ da,fdb ] _ {P} = f [ da,db ] _ {P} + P ^ \srp ( da ) ( f ) db $, for all $ a, b, f \in A $. (Here, $ P ^ \srp $ is the adjoint of $ P $, mapping the Kähler differentials into the derivations of $ A $; cf. Adjoint operator.) The Poisson cohomology (cf. Cohomology) of $ A $ is then defined and, when $ \Omega ^ {1} ( A ) $ is projective as an $ A $- module, is equal to the cohomology of the complex of alternating $ A $- linear mappings on $ \Omega ^ {1} ( A ) $ with values in $ A $, with the differential [a1] defined by the Lie–Rinehart algebra structure. In the case of the algebra of functions on a differentiable manifold, the Poisson cohomology coincides with the cohomology of the complex of multivectors, with differential $ d _ {P} = [ P, \cdot ] $, where $ P $ is the Poisson bivector and $ [ \cdot, \cdot ] $ is the Schouten bracket.
In a canonical ring [a4], the Poisson bracket is defined by a given mapping $ P ^ \srp $. Dirac structures [a13] on complexes over Lie algebras are a generalization of the Poisson algebras, adapted to the theory of infinite-dimensional Hamiltonian systems, where the ring of functions is replaced by the vector space of functionals.
In the category of $ \mathbf Z $- graded algebras, there are even and odd Poisson algebras, called graded Poisson algebras and Gerstenhaber algebras, respectively. Let $ A = \oplus A ^ {i} $ be an associative, graded commutative algebra. A graded Poisson (respectively, Gerstenhaber) algebra structure on $ A $ is a graded Lie algebra structure (cf. Lie algebra, graded) $ \{ \cdot, \cdot \} $( respectively, where the grading is shifted by $ 1 $), such that a graded version of the Leibniz rule holds: for each $ a \in A ^ {i} $, $ \{ a, \cdot \} $ is a derivation of degree $ i $( respectively, $ i + 1 $) of the graded commutative algebra $ A = \oplus A ^ {i} $. Examples of Gerstenhaber algebras are: the Hochschild cohomology of an associative algebra [a2], in particular, the Schouten algebra of multivectors on a smooth manifold [a3], the exterior algebra of a Lie algebra, the algebra of differential forms on a Poisson manifold [a9], the space of sections of the exterior algebra of a Lie algebroid, the algebra of functions on an odd Poisson supermanifold of type $ ( n \mid n ) $[a7]. Batalin–Vil'koviskii algebras, also called BV-algebras, are exact Gerstenhaber algebras, i.e., their Lie bracket is a coboundary in the graded Hochschild cohomology of the algebra. Such structures arise on the BRST cohomology of topological field theories [a14].
References
[a1] | R.S. Palais, "The cohomology of Lie rings" , Proc. Symp. Pure Math. , 3 , Amer. Math. Soc. (1961) pp. 130–137 |
[a2] | M. Gerstenhaber, "The cohomology structure of an associative ring" Ann. of Math. , 78 (1963) pp. 267–288 |
[a3] | W.M. Tulczyjew, "The graded Lie algebra of multivector fields and the generalized Lie derivative of forms" Bull. Acad. Pol. Sci., Sér. Sci. Math. Astr. Phys. , 22 (1974) pp. 937–942 |
[a4] | A. M. Vinogradov, I.S. Krasil'shchik, "What is the Hamiltonian formalism?" Russian Math. Surveys , 30 : 1 (1975) pp. 177–202 (In Russian) |
[a5] | A. Lichnerowicz, "Les variétés de Poisson et leurs algèbres de Lie associées" J. Diff. Geom. , 12 (1977) pp. 253–300 |
[a6] | J. Braconnier, "Algèbres de Poisson" C.R. Acad. Sci. Paris , A284 (1977) pp. 1345–1348 |
[a7] | B. Kostant, "Graded manifolds, graded Lie theory and prequantization" K. Bleuler (ed.) A. Reetz (ed.) , Differential Geometric Methods in Mathematical Physics (Bonn, 1975) , Lecture Notes in Mathematics , 570 , Springer (1977) pp. 177–306 |
[a8] | I.M. Gelfand, I.Ya. Dorfman, "Hamiltonian operators and algebraic structures related to them" Funct. Anal. Appl. , 13 (1979) pp. 248–262 (In Russian) |
[a9] | J.-L. Koszul, "Crochet de Schouten–Nijenhuis et cohomologie" Astérisque, hors série, Soc. Math. France (1985) pp. 257–271 |
[a10] | K.H. Bhaskara, K. Viswanath, "Calculus on Poisson manifolds" Bull. London Math. Soc. , 20 (1988) pp. 68–72 |
[a11] | Y. Kosmann-Schwarzbach, F. Magri, "Poisson–Nijenhuis structures" Ann. Inst. H. Poincaré, Phys. Th. , 53 (1990) pp. 35–81 |
[a12] | J. Huebschmann, "Poisson cohomology and quantization" J. Reine Angew. Math. , 408 (1990) pp. 57–113 |
[a13] | I. Dorfman, "Dirac structures and integrability of nonlinear evolution equations" , Wiley (1993) |
[a14] | B.H. Lian, G.J. Zuckerman, "New perspectives on the BRST-algebraic structure of string theory" Comm. Math. Phys. , 154 (1993) pp. 613–646 |
[a15] | Y. Kosmann-Schwarzbach, "From Poisson to Gerstenhaber algebras" Ann. Inst. Fourier , 46 : 5 (1996) pp. 1243–1274 |
[a16] | M. Flato, M. Gerstenhaber, A.A. Voronov, "Cohomology and deformation of Leibniz pairs" Letters Math. Phys. , 34 (1995) pp. 77–90 |
Poisson algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poisson_algebra&oldid=48214