Difference between revisions of "Poincaré sphere"
Ulf Rehmann (talk | contribs) m (moved Poincare sphere to Poincaré sphere over redirect: accented title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p0731201.png | ||
+ | $#A+1 = 20 n = 0 | ||
+ | $#C+1 = 20 : ~/encyclopedia/old_files/data/P073/P.0703120 Poincar\Aee sphere | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The sphere in the space $ \mathbf R ^ {3} $ | |
+ | with diametrically-opposite points identified. The Poincaré sphere is diffeomorphic to the projective plane $ \mathbf R P ^ {2} $; | ||
+ | it was introduced by H. Poincaré (see ) to investigate the behaviour at infinity of the phase trajectories of a two-dimensional autonomous system | ||
+ | |||
+ | $$ \tag{1 } | ||
+ | \dot{x} = P ( x , y ) ,\ \ | ||
+ | \dot{y} = Q ( x , y ) | ||
+ | $$ | ||
+ | |||
+ | when $ P $ | ||
+ | and $ Q $ | ||
+ | are polynomials. The Poincaré sphere is usually depicted so that it touches the $ ( x , y ) $- | ||
+ | plane; the projection from the centre of the Poincaré sphere gives a one-to-one mapping onto $ \mathbf R P ^ {2} $, | ||
+ | and, moreover, a point at infinity corresponds to a pair of diametrically-opposite points on the equator. Accordingly the phase trajectories of the system (1) map onto curves on the sphere. | ||
An equivalent method of investigating the system (1) is to apply a Poincaré transformation: | An equivalent method of investigating the system (1) is to apply a Poincaré transformation: | ||
Line 9: | Line 30: | ||
a) | a) | ||
− | + | $$ | |
+ | x = | ||
+ | \frac{1}{z} | ||
+ | ,\ y = | ||
+ | \frac{u}{z} | ||
+ | , | ||
+ | $$ | ||
or | or | ||
Line 15: | Line 42: | ||
b) | b) | ||
− | + | $$ | |
+ | x = | ||
+ | \frac{u}{z} | ||
+ | ,\ y = | ||
+ | \frac{1}{z} | ||
+ | . | ||
+ | $$ | ||
+ | |||
+ | The first (respectively, the second) is suitable outside a sector containing the $ y $- | ||
+ | axis ( $ x $- | ||
+ | axis). For example, the transformation a) reduces the system (1) to the form | ||
+ | |||
+ | $$ \tag{1'} | ||
− | + | \frac{du}{d \tau } | |
+ | = P ^ {*} ( u , z ) ,\ \ | ||
− | + | \frac{dz}{d \tau } | |
+ | = Q ^ {*} ( u , z ) , | ||
+ | $$ | ||
− | where | + | where $ d t = z ^ {n} d \tau $ |
+ | and $ n $ | ||
+ | is the largest of the degrees of $ P $, | ||
+ | $ Q $; | ||
+ | the singular points of the system (1'}) are called the singular points at infinity of the system (1). If the polynomials $ P $ | ||
+ | and $ Q $ | ||
+ | are coprime, then the polynomials $ P ^ {*} $ | ||
+ | and $ Q ^ {*} $ | ||
+ | are also coprime and the system (1) has a finite number of singular points at infinity. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1a]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" ''J. de Math.'' , '''7''' (1881) pp. 375–422</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" ''J. de Math.'' , '''8''' (1882) pp. 251–296</TD></TR><TR><TD valign="top">[1c]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" ''J. de Math.'' , '''1''' (1885) pp. 167–244</TD></TR><TR><TD valign="top">[1d]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" ''J. de Math.'' , '''2''' (1886) pp. 151–217</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Qualitative theory of second-order dynamic systems" , Wiley (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lefschetz, "Differential equations: geometric theory" , Interscience (1957)</TD></TR></table> | <table><TR><TD valign="top">[1a]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" ''J. de Math.'' , '''7''' (1881) pp. 375–422</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" ''J. de Math.'' , '''8''' (1882) pp. 251–296</TD></TR><TR><TD valign="top">[1c]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" ''J. de Math.'' , '''1''' (1885) pp. 167–244</TD></TR><TR><TD valign="top">[1d]</TD> <TD valign="top"> H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" ''J. de Math.'' , '''2''' (1886) pp. 151–217</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Qualitative theory of second-order dynamic systems" , Wiley (1973) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S. Lefschetz, "Differential equations: geometric theory" , Interscience (1957)</TD></TR></table> |
Revision as of 08:06, 6 June 2020
The sphere in the space $ \mathbf R ^ {3} $
with diametrically-opposite points identified. The Poincaré sphere is diffeomorphic to the projective plane $ \mathbf R P ^ {2} $;
it was introduced by H. Poincaré (see ) to investigate the behaviour at infinity of the phase trajectories of a two-dimensional autonomous system
$$ \tag{1 } \dot{x} = P ( x , y ) ,\ \ \dot{y} = Q ( x , y ) $$
when $ P $ and $ Q $ are polynomials. The Poincaré sphere is usually depicted so that it touches the $ ( x , y ) $- plane; the projection from the centre of the Poincaré sphere gives a one-to-one mapping onto $ \mathbf R P ^ {2} $, and, moreover, a point at infinity corresponds to a pair of diametrically-opposite points on the equator. Accordingly the phase trajectories of the system (1) map onto curves on the sphere.
An equivalent method of investigating the system (1) is to apply a Poincaré transformation:
a)
$$ x = \frac{1}{z} ,\ y = \frac{u}{z} , $$
or
b)
$$ x = \frac{u}{z} ,\ y = \frac{1}{z} . $$
The first (respectively, the second) is suitable outside a sector containing the $ y $- axis ( $ x $- axis). For example, the transformation a) reduces the system (1) to the form
$$ \tag{1'} \frac{du}{d \tau } = P ^ {*} ( u , z ) ,\ \ \frac{dz}{d \tau } = Q ^ {*} ( u , z ) , $$
where $ d t = z ^ {n} d \tau $ and $ n $ is the largest of the degrees of $ P $, $ Q $; the singular points of the system (1'}) are called the singular points at infinity of the system (1). If the polynomials $ P $ and $ Q $ are coprime, then the polynomials $ P ^ {*} $ and $ Q ^ {*} $ are also coprime and the system (1) has a finite number of singular points at infinity.
References
[1a] | H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" J. de Math. , 7 (1881) pp. 375–422 |
[1b] | H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" J. de Math. , 8 (1882) pp. 251–296 |
[1c] | H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" J. de Math. , 1 (1885) pp. 167–244 |
[1d] | H. Poincaré, "Mémoire sur les courbes définiés par une équation differentielle" J. de Math. , 2 (1886) pp. 151–217 |
[2] | A.A. Andronov, E.A. Leontovich, I.I. Gordon, A.G. Maier, "Qualitative theory of second-order dynamic systems" , Wiley (1973) (Translated from Russian) |
[3] | S. Lefschetz, "Differential equations: geometric theory" , Interscience (1957) |
Poincaré sphere. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Poincar%C3%A9_sphere&oldid=48209