Difference between revisions of "Pick theorem"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | p0727001.png | ||
+ | $#A+1 = 32 n = 0 | ||
+ | $#C+1 = 32 : ~/encyclopedia/old_files/data/P072/P.0702700 Pick theorem, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Schwarz' lemma in invariant form'' | ''Schwarz' lemma in invariant form'' | ||
− | The following generalization of the [[Schwarz lemma|Schwarz lemma]]. Let | + | The following generalization of the [[Schwarz lemma|Schwarz lemma]]. Let $ w = f( z) $ |
+ | be a bounded regular analytic function in the unit disc $ \Omega = \{ {z \in \mathbf C } : {| z | < 1 } \} $, | ||
+ | $ | f( z) | \leq 1 $ | ||
+ | for $ | z | < 1 $. | ||
+ | Then for any points $ z _ {1} $ | ||
+ | and $ z _ {2} $ | ||
+ | in $ \Omega $ | ||
+ | the non-Euclidean distance $ d( w _ {1} , w _ {2} ) $ | ||
+ | of their images $ w _ {1} = f( z _ {1} ) $ | ||
+ | and $ w _ {2} = f( z _ {2} ) $ | ||
+ | does not exceed the non-Euclidean distance $ d( z _ {1} , z _ {2} ) $, | ||
+ | i.e. | ||
− | + | $$ \tag{1 } | |
+ | d( w _ {1} , w _ {2} ) \leq d( z _ {1} , z _ {2} ) ,\ \ | ||
+ | | z _ {1} | , | z _ {2} | < 1. | ||
+ | $$ | ||
One also has the inequality | One also has the inequality | ||
− | + | $$ \tag{2 } | |
+ | |||
+ | \frac{| dw | }{1- | w | ^ {2} } | ||
+ | \leq | ||
+ | \frac{| dz | }{1- | z | ^ {2} } | ||
+ | ,\ \ | ||
+ | dw = f ^ { \prime } ( z) dz,\ | z | < 1, | ||
+ | $$ | ||
− | between the elements of non-Euclidean length (the differential form of Pick's theorem or the Schwarz lemma). Equality applies in (1) and (2) only if | + | between the elements of non-Euclidean length (the differential form of Pick's theorem or the Schwarz lemma). Equality applies in (1) and (2) only if $ w = f( z) $ |
+ | is a Möbius function that maps $ \Omega $ | ||
+ | onto itself (cf. [[Fractional-linear mapping|Fractional-linear mapping]]). | ||
− | The non-Euclidean, or hyperbolic, distance | + | The non-Euclidean, or hyperbolic, distance $ d( z _ {1} , z _ {2} ) $ |
+ | is the distance in Lobachevskii geometry between $ z _ {1} $ | ||
+ | and $ z _ {2} $ | ||
+ | when $ \Omega $ | ||
+ | is the Lobachevskii plane and arcs of circles serve as Lobachevskii straight lines, these being orthogonal to the unit circle (Poincaré's model), and | ||
− | + | $$ | |
+ | d( z _ {1} , z _ {2} ) = | ||
+ | \frac{1}{2} | ||
+ | \mathop{\rm ln} ( \alpha , \beta , z _ {1} , z _ {2} ) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
− | where | + | \frac{1}{2} |
+ | \mathop{\rm ln} | ||
+ | \frac{| 1- \overline{z}\; _ {2} z _ {2} | +| z _ {1} - z _ {2} | }{| 1- \overline{z}\; _ {1} z _ {2} | - | z _ {1} - z _ {2} | } | ||
+ | , | ||
+ | $$ | ||
+ | |||
+ | where $ ( \alpha , \beta , z _ {1} , z _ {2} ) $ | ||
+ | is the [[Cross ratio|cross ratio]] between the points $ z _ {1} $ | ||
+ | and $ z _ {2} $ | ||
+ | and the points of intersection $ \alpha $ | ||
+ | and $ \beta $ | ||
+ | of the Lobachevskii straight line passing through $ z _ {1} $ | ||
+ | and $ z _ {2} $ | ||
+ | with the unit circle (see Fig.). | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p072700a.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p072700a.gif" /> | ||
Line 23: | Line 80: | ||
Figure: p072700a | Figure: p072700a | ||
− | The non-Euclidean length of the image | + | The non-Euclidean length of the image $ f( L) $ |
+ | of any rectifiable curve $ L \subset \Omega $ | ||
+ | under the mapping $ w = f( z) $ | ||
+ | does not exceed the non-Euclidean length of $ L $. | ||
The theorem was established by G. Pick [[#References|[1]]]; a far-reaching generalization of it is provided by the principle of the hyperbolic metric (cf. [[Hyperbolic metric, principle of the|Hyperbolic metric, principle of the]]). In geometric function theory these theorems provide bounds for various functionals related to mapping functions [[#References|[2]]], [[#References|[3]]]. | The theorem was established by G. Pick [[#References|[1]]]; a far-reaching generalization of it is provided by the principle of the hyperbolic metric (cf. [[Hyperbolic metric, principle of the|Hyperbolic metric, principle of the]]). In geometric function theory these theorems provide bounds for various functionals related to mapping functions [[#References|[2]]], [[#References|[3]]]. | ||
Line 29: | Line 89: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Pick, "Ueber eine Eigenschaft der konformen Abbildung kreisförmiger Bereiche" ''Math. Ann.'' , '''77''' (1916) pp. 1–6</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Carathéodory, "Conformal representation" , Cambridge Univ. Press (1952)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G. Pick, "Ueber eine Eigenschaft der konformen Abbildung kreisförmiger Bereiche" ''Math. Ann.'' , '''77''' (1916) pp. 1–6</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Carathéodory, "Conformal representation" , Cambridge Univ. Press (1952)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.V. Ahlfors, "Conformal invariants. Topics in geometric function theory" , McGraw-Hill (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Lang, "Introduction to complex hyperbolic spaces" , Springer (1987)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> L.V. Ahlfors, "Conformal invariants. Topics in geometric function theory" , McGraw-Hill (1973)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> S. Lang, "Introduction to complex hyperbolic spaces" , Springer (1987)</TD></TR></table> |
Latest revision as of 08:06, 6 June 2020
Schwarz' lemma in invariant form
The following generalization of the Schwarz lemma. Let $ w = f( z) $ be a bounded regular analytic function in the unit disc $ \Omega = \{ {z \in \mathbf C } : {| z | < 1 } \} $, $ | f( z) | \leq 1 $ for $ | z | < 1 $. Then for any points $ z _ {1} $ and $ z _ {2} $ in $ \Omega $ the non-Euclidean distance $ d( w _ {1} , w _ {2} ) $ of their images $ w _ {1} = f( z _ {1} ) $ and $ w _ {2} = f( z _ {2} ) $ does not exceed the non-Euclidean distance $ d( z _ {1} , z _ {2} ) $, i.e.
$$ \tag{1 } d( w _ {1} , w _ {2} ) \leq d( z _ {1} , z _ {2} ) ,\ \ | z _ {1} | , | z _ {2} | < 1. $$
One also has the inequality
$$ \tag{2 } \frac{| dw | }{1- | w | ^ {2} } \leq \frac{| dz | }{1- | z | ^ {2} } ,\ \ dw = f ^ { \prime } ( z) dz,\ | z | < 1, $$
between the elements of non-Euclidean length (the differential form of Pick's theorem or the Schwarz lemma). Equality applies in (1) and (2) only if $ w = f( z) $ is a Möbius function that maps $ \Omega $ onto itself (cf. Fractional-linear mapping).
The non-Euclidean, or hyperbolic, distance $ d( z _ {1} , z _ {2} ) $ is the distance in Lobachevskii geometry between $ z _ {1} $ and $ z _ {2} $ when $ \Omega $ is the Lobachevskii plane and arcs of circles serve as Lobachevskii straight lines, these being orthogonal to the unit circle (Poincaré's model), and
$$ d( z _ {1} , z _ {2} ) = \frac{1}{2} \mathop{\rm ln} ( \alpha , \beta , z _ {1} , z _ {2} ) = $$
$$ = \ \frac{1}{2} \mathop{\rm ln} \frac{| 1- \overline{z}\; _ {2} z _ {2} | +| z _ {1} - z _ {2} | }{| 1- \overline{z}\; _ {1} z _ {2} | - | z _ {1} - z _ {2} | } , $$
where $ ( \alpha , \beta , z _ {1} , z _ {2} ) $ is the cross ratio between the points $ z _ {1} $ and $ z _ {2} $ and the points of intersection $ \alpha $ and $ \beta $ of the Lobachevskii straight line passing through $ z _ {1} $ and $ z _ {2} $ with the unit circle (see Fig.).
Figure: p072700a
The non-Euclidean length of the image $ f( L) $ of any rectifiable curve $ L \subset \Omega $ under the mapping $ w = f( z) $ does not exceed the non-Euclidean length of $ L $.
The theorem was established by G. Pick [1]; a far-reaching generalization of it is provided by the principle of the hyperbolic metric (cf. Hyperbolic metric, principle of the). In geometric function theory these theorems provide bounds for various functionals related to mapping functions [2], [3].
References
[1] | G. Pick, "Ueber eine Eigenschaft der konformen Abbildung kreisförmiger Bereiche" Math. Ann. , 77 (1916) pp. 1–6 |
[2] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
[3] | C. Carathéodory, "Conformal representation" , Cambridge Univ. Press (1952) |
[4] | J.B. Garnett, "Bounded analytic functions" , Acad. Press (1981) |
Comments
References
[a1] | L.V. Ahlfors, "Conformal invariants. Topics in geometric function theory" , McGraw-Hill (1973) |
[a2] | S. Lang, "Introduction to complex hyperbolic spaces" , Springer (1987) |
Pick theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pick_theorem&oldid=48179