Namespaces
Variants
Actions

Difference between revisions of "Pfaffian form"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
p0725201.png
 +
$#A+1 = 35 n = 0
 +
$#C+1 = 35 : ~/encyclopedia/old_files/data/P072/P.0702520 Pfaffian form
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A [[Differential form|differential form]] of degree 1.
 
A [[Differential form|differential form]] of degree 1.
  
 
====Comments====
 
====Comments====
A Pfaffian form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p0725201.png" /> defined on an open subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p0725202.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p0725203.png" /> a manifold, is of odd class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p0725204.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p0725205.png" /> if it satisfies
+
A Pfaffian form $  \omega = a _ {1} ( x)  dx  ^ {1} + \dots + a _ {n} ( x)  dx  ^ {n} $
 +
defined on an open subset $  U \subset  M $,  
 +
$  M $
 +
a manifold, is of odd class $  2s+ 1 $
 +
at $  x $
 +
if it satisfies
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p0725206.png" /></td> </tr></table>
+
$$
 +
\omega \wedge ( d \omega )  ^ {s} ( x)  \neq  0 ,\ \
 +
( d \omega )  ^ {s+} 1 ( x)  = 0 ;
 +
$$
  
it is of even class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p0725207.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p0725208.png" /> if it satisfies
+
it is of even class $  2s+ 2 $
 +
at $  x $
 +
if it satisfies
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p0725209.png" /></td> </tr></table>
+
$$
 +
\omega \wedge ( d \omega )  ^ {s} ( x)  \neq  0 ,\ \
 +
\omega \wedge ( d \omega )  ^ {s+} 1 ( x)  = 0 ,\ \
 +
( d \omega )  ^ {s+} 1 ( x)  \neq  0.
 +
$$
  
Pfaffian forms of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252011.png" /> both define a [[Pfaffian equation|Pfaffian equation]] of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252012.png" />.
+
Pfaffian forms of class $  2s+ 1 $
 +
and $  2s+ 2 $
 +
both define a [[Pfaffian equation|Pfaffian equation]] of class $  2s+ 1 $.
  
 
Darboux's theorem on Pfaffian forms says the following.
 
Darboux's theorem on Pfaffian forms says the following.
  
1) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252013.png" /> is a Pfaffian form of constant class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252014.png" /> on an open subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252015.png" /> of a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252016.png" />, then for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252017.png" /> there is a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252018.png" /> with a family of independent functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252019.png" />, such that on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252020.png" />,
+
1) If $  \omega $
 +
is a Pfaffian form of constant class $  2s+ 1 $
 +
on an open subset $  U $
 +
of a manifold $  M $,  
 +
then for every $  x \in U $
 +
there is a neighbourhood $  V $
 +
with a family of independent functions $  x  ^ {0} \dots x  ^ {2s} $,  
 +
such that on $  V $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252021.png" /></td> </tr></table>
+
$$
 +
\omega  = dx  ^ {0} - \sum _ { k= } 1 ^ { s }  x  ^ {s+} k  dx  ^ {k} .
 +
$$
  
2) If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252022.png" /> is a Pfaffian form of constant class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252023.png" /> on an open subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252024.png" /> of a manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252025.png" />, then for every <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252026.png" /> there is a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252027.png" /> with a family of independent functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252028.png" /> such that on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252029.png" />,
+
2) If $  \omega $
 +
is a Pfaffian form of constant class $  2s+ 2 $
 +
on an open subset $  U $
 +
of a manifold $  M $,  
 +
then for every $  x \in U $
 +
there is a neighbourhood $  V $
 +
with a family of independent functions $  x  ^ {0} \dots x  ^ {s} , z  ^ {0} \dots z  ^ {s} $
 +
such that on $  V $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252030.png" /></td> </tr></table>
+
$$
 +
\omega  = z  ^ {0}  dx  ^ {0} - \sum _ { k= } 1 ^ { s }  z  ^ {k}  dx  ^ {k} ,
 +
$$
  
where the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252031.png" /> is without zeros on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252032.png" />.
+
where the function $  z  ^ {0} $
 +
is without zeros on $  V $.
  
Thus, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252033.png" />, the functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252034.png" /> are canonical coordinates for the symplectic form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072520/p07252035.png" />.
+
Thus, if $  \mathop{\rm dim} ( M) = 2s+ 2 $,  
 +
the functions $  (- x  ^ {0} , x  ^ {1} \dots x  ^ {s} , z  ^ {0} \dots z  ^ {s} ) $
 +
are canonical coordinates for the symplectic form $  d \omega $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P. Libermann,  C.-M. Marle,  "Symplectic geometry and analytical mechanics" , Reidel  (1987)  pp. Chapt. V  (Translated from French)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P. Libermann,  C.-M. Marle,  "Symplectic geometry and analytical mechanics" , Reidel  (1987)  pp. Chapt. V  (Translated from French)</TD></TR></table>

Revision as of 08:06, 6 June 2020


A differential form of degree 1.

Comments

A Pfaffian form $ \omega = a _ {1} ( x) dx ^ {1} + \dots + a _ {n} ( x) dx ^ {n} $ defined on an open subset $ U \subset M $, $ M $ a manifold, is of odd class $ 2s+ 1 $ at $ x $ if it satisfies

$$ \omega \wedge ( d \omega ) ^ {s} ( x) \neq 0 ,\ \ ( d \omega ) ^ {s+} 1 ( x) = 0 ; $$

it is of even class $ 2s+ 2 $ at $ x $ if it satisfies

$$ \omega \wedge ( d \omega ) ^ {s} ( x) \neq 0 ,\ \ \omega \wedge ( d \omega ) ^ {s+} 1 ( x) = 0 ,\ \ ( d \omega ) ^ {s+} 1 ( x) \neq 0. $$

Pfaffian forms of class $ 2s+ 1 $ and $ 2s+ 2 $ both define a Pfaffian equation of class $ 2s+ 1 $.

Darboux's theorem on Pfaffian forms says the following.

1) If $ \omega $ is a Pfaffian form of constant class $ 2s+ 1 $ on an open subset $ U $ of a manifold $ M $, then for every $ x \in U $ there is a neighbourhood $ V $ with a family of independent functions $ x ^ {0} \dots x ^ {2s} $, such that on $ V $,

$$ \omega = dx ^ {0} - \sum _ { k= } 1 ^ { s } x ^ {s+} k dx ^ {k} . $$

2) If $ \omega $ is a Pfaffian form of constant class $ 2s+ 2 $ on an open subset $ U $ of a manifold $ M $, then for every $ x \in U $ there is a neighbourhood $ V $ with a family of independent functions $ x ^ {0} \dots x ^ {s} , z ^ {0} \dots z ^ {s} $ such that on $ V $,

$$ \omega = z ^ {0} dx ^ {0} - \sum _ { k= } 1 ^ { s } z ^ {k} dx ^ {k} , $$

where the function $ z ^ {0} $ is without zeros on $ V $.

Thus, if $ \mathop{\rm dim} ( M) = 2s+ 2 $, the functions $ (- x ^ {0} , x ^ {1} \dots x ^ {s} , z ^ {0} \dots z ^ {s} ) $ are canonical coordinates for the symplectic form $ d \omega $.

References

[a1] P. Libermann, C.-M. Marle, "Symplectic geometry and analytical mechanics" , Reidel (1987) pp. Chapt. V (Translated from French)
How to Cite This Entry:
Pfaffian form. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pfaffian_form&oldid=48173