|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | p0720701.png |
| + | $#A+1 = 137 n = 0 |
| + | $#C+1 = 137 : ~/encyclopedia/old_files/data/P072/P.0702070 Perfect measure |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| A concept introduced by B.V. Gnedenko and A.N. Kolmogorov in [[#References|[1]]] with the aim of "attaining a full harmony between abstract measure theory and measure theory in metric spaces" . The subsequent development of the theory has revealed other aspects of the value of this concept. On the one hand the class of perfect measures is very wide, and on the other, a number of unpleasant technical complications that occur in general measure theory do not arise if one restricts to perfect measures. | | A concept introduced by B.V. Gnedenko and A.N. Kolmogorov in [[#References|[1]]] with the aim of "attaining a full harmony between abstract measure theory and measure theory in metric spaces" . The subsequent development of the theory has revealed other aspects of the value of this concept. On the one hand the class of perfect measures is very wide, and on the other, a number of unpleasant technical complications that occur in general measure theory do not arise if one restricts to perfect measures. |
| | | |
− | A finite [[Measure|measure]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p0720701.png" /> on a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p0720702.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p0720703.png" /> of subsets of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p0720704.png" /> is called perfect if for any real-valued measurable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p0720705.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p0720706.png" /> and any set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p0720707.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p0720708.png" />, | + | A finite [[Measure|measure]] $ \mu $ |
| + | on a $ \sigma $- |
| + | algebra $ S $ |
| + | of subsets of a set $ X $ |
| + | is called perfect if for any real-valued measurable function $ f $ |
| + | on $ X $ |
| + | and any set $ E \subset \mathbf R $ |
| + | such that $ f ^ { - 1 } ( E) \in S $, |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p0720709.png" /></td> </tr></table>
| + | $$ |
| + | \mu ( f ^ { - 1 } ( E) ) = \inf \ |
| + | \{ {\mu ( f ^ { - 1 } ( G) ) } : {G \supset E , G \in \mathfrak G } \} |
| + | , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207010.png" /> is the class of open subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207011.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207012.png" /> to be perfect, it is necessary that for any real-valued measurable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207013.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207014.png" /> there exists a Borel set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207015.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207016.png" />, and sufficient that for any real-valued measurable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207017.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207018.png" /> and any set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207019.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207020.png" /> there exists a Borel set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207021.png" /> such that | + | where $ \mathfrak G $ |
| + | is the class of open subsets of $ \mathbf R $. |
| + | For $ \mu $ |
| + | to be perfect, it is necessary that for any real-valued measurable function $ f $ |
| + | on $ X $ |
| + | there exists a Borel set $ B \subset f( X) \subset \mathbf R $ |
| + | such that $ \mu ( f ^ { - 1 } ( B) ) = \mu ( X) $, |
| + | and sufficient that for any real-valued measurable function $ f $ |
| + | on $ X $ |
| + | and any set $ E \subset \mathbf R $ |
| + | for which $ f ^ { - 1 } ( E) \in S $ |
| + | there exists a Borel set $ B \subset E $ |
| + | such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207022.png" /></td> </tr></table>
| + | $$ |
| + | \mu ( f ^ { - 1 } ( E) ) = \mu ( f ^ { - 1 } ( B) ) . |
| + | $$ |
| | | |
− | Every discrete measure is perfect. A measure defined on a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207023.png" />-algebra of subsets of a separable metric space that contains all open sets is perfect if and only if the measure of any measurable set is the least upper bound of the measures of its compact subsets. The restriction of a perfect measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207024.png" /> defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207025.png" /> to any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207026.png" />-subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207027.png" /> is perfect. A measure induced by a perfect measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207028.png" /> on any subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207029.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207030.png" /> is perfect. The image of a perfect measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207031.png" /> under a measurable mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207032.png" /> into another measurable space is perfect. A measure is perfect if and only if its completion is perfect. For every measure on any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207033.png" />-subalgebra of a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207034.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207035.png" /> of subsets of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207036.png" /> to be perfect it is necessary and sufficient that for any real-valued <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207037.png" />-measurable function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207038.png" /> the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207039.png" /> is universally measurable (that is, it belongs to the domain of definition of the completion of every Borel measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207040.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207041.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207042.png" /> is the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207043.png" />-algebra of Borel subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207044.png" />, then every measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207045.png" /> is perfect if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207046.png" /> is universally measurable. | + | Every discrete measure is perfect. A measure defined on a $ \sigma $- |
| + | algebra of subsets of a separable metric space that contains all open sets is perfect if and only if the measure of any measurable set is the least upper bound of the measures of its compact subsets. The restriction of a perfect measure $ \mu $ |
| + | defined on $ S $ |
| + | to any $ \sigma $- |
| + | subalgebra of $ S $ |
| + | is perfect. A measure induced by a perfect measure $ \mu $ |
| + | on any subset $ X _ {1} \in S $ |
| + | with $ \mu ( X _ {1} ) > 0 $ |
| + | is perfect. The image of a perfect measure $ \mu $ |
| + | under a measurable mapping of $ ( X , S ) $ |
| + | into another measurable space is perfect. A measure is perfect if and only if its completion is perfect. For every measure on any $ \sigma $- |
| + | subalgebra of a $ \sigma $- |
| + | algebra $ S $ |
| + | of subsets of a set $ X $ |
| + | to be perfect it is necessary and sufficient that for any real-valued $ S $- |
| + | measurable function $ f $ |
| + | the set $ f ( X) $ |
| + | is universally measurable (that is, it belongs to the domain of definition of the completion of every Borel measure on $ \mathbf R $). |
| + | If $ X \subset \mathbf R $ |
| + | and if $ S $ |
| + | is the $ \sigma $- |
| + | algebra of Borel subsets of $ X $, |
| + | then every measure on $ S $ |
| + | is perfect if and only if $ X $ |
| + | is universally measurable. |
| | | |
− | Every space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207047.png" /> with a perfect measure such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207048.png" /> has a countable numbers of generators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207049.png" /> separating points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207050.png" /> (that is, for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207051.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207052.png" />, there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207053.png" />: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207055.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207056.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207057.png" />) is almost isomorphic to some space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207058.png" />, consisting of the [[Lebesgue measure|Lebesgue measure]] on a finite interval and of a countable sequence (possibly empty) of points of positive mass (i.e., there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207059.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207060.png" /> and a one-to-one mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207061.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207062.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207063.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207064.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207065.png" /> are measurable and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207066.png" />). | + | Every space $ ( X , S , \mu ) $ |
| + | with a perfect measure such that $ S $ |
| + | has a countable numbers of generators $ \{ S _ {i} \} $ |
| + | separating points of $ X $( |
| + | that is, for all $ x , y \in X $, |
| + | $ x \neq y $, |
| + | there is an $ i $: |
| + | $ x \in S _ {i} $, |
| + | $ y\notin S _ {i} $ |
| + | or $ x \notin S _ {i} $, |
| + | $ y \in S _ {i} $) |
| + | is almost isomorphic to some space $ ( L , {\mathcal L} , \lambda ) $, |
| + | consisting of the [[Lebesgue measure|Lebesgue measure]] on a finite interval and of a countable sequence (possibly empty) of points of positive mass (i.e., there is an $ N \in S $ |
| + | with $ \mu ( N) = 0 $ |
| + | and a one-to-one mapping $ \phi $ |
| + | of $ X \setminus N $ |
| + | onto $ L $ |
| + | such that $ \phi $ |
| + | and $ \phi ^ {-} 1 $ |
| + | are measurable and $ \lambda = \mu \phi ^ {-} 1 $). |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207067.png" /> be any index set and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207068.png" /> be a given space with a perfect measure for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207069.png" />. Put <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207070.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207071.png" /> be the algebra generated by the class of sets of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207072.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207073.png" /> is a finitely-additive measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207074.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207075.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207076.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207077.png" />, then: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207078.png" /> is countably additive on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207079.png" />; and 2) the extension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207080.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207081.png" /> to the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207082.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207083.png" /> generated by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207084.png" /> is perfect. | + | Let $ I $ |
| + | be any index set and let $ ( X _ {i} , S _ {i} , \mu _ {i} ) $ |
| + | be a given space with a perfect measure for each $ i \in I $. |
| + | Put $ X = \prod _ {i \in I } X _ {i} $ |
| + | and let $ {\mathcal A} $ |
| + | be the algebra generated by the class of sets of the form $ \{ {x \in X } : {x _ {i} \in A \in S _ {i} } \} $. |
| + | If $ \mu ^ \prime $ |
| + | is a finitely-additive measure on $ {\mathcal A} $ |
| + | such that $ \mu ^ \prime ( \{ {x \in S } : {x _ {i} \in A } \} ) = \mu _ {i} ( A) $ |
| + | for all $ i \in I $ |
| + | and $ A \in S _ {i} $, |
| + | then: 1) $ \mu ^ \prime $ |
| + | is countably additive on $ A $; |
| + | and 2) the extension $ \mu $ |
| + | of $ \mu ^ \prime $ |
| + | to the $ \sigma $- |
| + | algebra $ S $ |
| + | generated by $ {\mathcal A} $ |
| + | is perfect. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207085.png" /> be a space with a perfect [[Probability measure|probability measure]] and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207086.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207087.png" /> be two <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207088.png" />-subalgebras of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207089.png" />-algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207090.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207091.png" /> has a countable number of generators. Then there is a regular conditional probability on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207092.png" /> given <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207093.png" />, i.e. there is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207094.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207095.png" /> such that: 1) for a fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207096.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207097.png" /> is a probability measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207098.png" />; 2) for a fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p07207099.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070100.png" /> is measurable with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070101.png" />; and 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070102.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070103.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070104.png" />. Moreover, the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070105.png" /> can be chosen in such a way that the measures <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070106.png" /> are perfect. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070107.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070108.png" /> be two measurable spaces and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070109.png" /> be a transition probability on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070110.png" />, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070111.png" /> is measurable with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070112.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070113.png" /> is a probability measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070114.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070115.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070116.png" />. If the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070117.png" /> are discrete and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070118.png" /> is a perfect probability measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070119.png" />, then the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070120.png" /> is perfect. | + | Let $ ( X , S , P ) $ |
| + | be a space with a perfect [[Probability measure|probability measure]] and let $ S _ {1} $, |
| + | $ S _ {2} $ |
| + | be two $ \sigma $- |
| + | subalgebras of the $ \sigma $- |
| + | algebra $ S $, |
| + | where $ S _ {1} $ |
| + | has a countable number of generators. Then there is a regular conditional probability on $ S _ {1} $ |
| + | given $ S _ {2} $, |
| + | i.e. there is a function $ p ( \cdot , \cdot ) $ |
| + | on $ X \times S _ {1} $ |
| + | such that: 1) for a fixed $ x $, |
| + | $ p ( x , \cdot ) $ |
| + | is a probability measure on $ S _ {1} $; |
| + | 2) for a fixed $ E $, |
| + | $ p ( \cdot , E ) $ |
| + | is measurable with respect to $ S _ {2} $; |
| + | and 3) $ \int _ {F} p ( x , E ) P ( d x ) = P ( E \cap F ) $ |
| + | for all $ E \in S _ {1} $ |
| + | and $ F \in S _ {2} $. |
| + | Moreover, the function $ p ( \cdot , \cdot ) $ |
| + | can be chosen in such a way that the measures $ p ( x , \cdot ) $ |
| + | are perfect. Let $ ( X , S ) $, |
| + | $ ( Y , {\mathcal T} ) $ |
| + | be two measurable spaces and let $ q ( \cdot , \cdot ) $ |
| + | be a transition probability on $ X \times {\mathcal T} $, |
| + | that is, $ q ( \cdot , E ) $ |
| + | is measurable with respect to $ S $ |
| + | and $ q ( x , \cdot ) $ |
| + | is a probability measure on $ {\mathcal T} $ |
| + | for all $ x \in X $, |
| + | $ E \in {\mathcal T} $. |
| + | If the $ q ( x , \cdot ) $ |
| + | are discrete and $ P $ |
| + | is a perfect probability measure on $ S $, |
| + | then the measure $ \int q ( x , \cdot ) P ( d x ) $ |
| + | is perfect. |
| | | |
− | Perfect measures are closely connected with compact measures. A class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070121.png" /> of subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070122.png" /> is called compact if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070123.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070124.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070125.png" /> implies that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070126.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070127.png" />. A finite measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070128.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070129.png" /> is called compact if there is a compact class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070130.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070131.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070132.png" /> one can choose a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070133.png" /> and an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070134.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070135.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070136.png" />. Every compact measure is perfect. For a measure to be perfect it is necessary and sufficient that its restriction to any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072070/p072070137.png" />-subalgebra with a countable number of generators be compact. | + | Perfect measures are closely connected with compact measures. A class $ {\mathcal K} $ |
| + | of subsets of $ X $ |
| + | is called compact if $ K _ {i} \in {\mathcal K} $, |
| + | $ i = 1 , 2 \dots $ |
| + | and $ \cap _ {i = 1 } ^ \infty K _ {i} = \emptyset $ |
| + | implies that $ \cap _ {i=} 1 ^ {n} K _ {i} = \emptyset $ |
| + | for some $ n $. |
| + | A finite measure $ \mu $ |
| + | on $ ( X , S ) $ |
| + | is called compact if there is a compact class $ {\mathcal K} $ |
| + | such that for all $ \epsilon > 0 $ |
| + | and $ E \in S $ |
| + | one can choose a $ K \in {\mathcal K} $ |
| + | and an $ E _ {1} \in S $ |
| + | such that $ E _ {1} \subset K \subset E $ |
| + | and $ \mu ( E \setminus E _ {1} ) < \epsilon $. |
| + | Every compact measure is perfect. For a measure to be perfect it is necessary and sufficient that its restriction to any $ \sigma $- |
| + | subalgebra with a countable number of generators be compact. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.V. Gnedenko, A.N. Kolmogorov, "Limit distributions for sums of independent random variables" , Addison-Wesley (1954) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E. Marczewski, "On compact measures" ''Fund. Math.'' , '''40''' (1953) pp. 113–124</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Ryll-Nardzewski, "On quasi-compact measures" ''Fund. Math.'' , '''40''' (1953) pp. 125–130</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.V. Sazonov, "On perfect measures" ''Transl. Amer. Math. Soc. (2)'' , '''48''' (1965) pp. 229–254 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''26''' (1962) pp. 391–414</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> D. Ramachandran, "Perfect measures" , '''1–2''' , Macmillan (1979)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> B.V. Gnedenko, A.N. Kolmogorov, "Limit distributions for sums of independent random variables" , Addison-Wesley (1954) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E. Marczewski, "On compact measures" ''Fund. Math.'' , '''40''' (1953) pp. 113–124</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> C. Ryll-Nardzewski, "On quasi-compact measures" ''Fund. Math.'' , '''40''' (1953) pp. 125–130</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> V.V. Sazonov, "On perfect measures" ''Transl. Amer. Math. Soc. (2)'' , '''48''' (1965) pp. 229–254 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''26''' (1962) pp. 391–414</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> D. Ramachandran, "Perfect measures" , '''1–2''' , Macmillan (1979)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− |
| |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> Kia-An Yen, "Forme mesurable de la théorie des ensembles sousliniens, applications à la théorie de la mesure" ''Scientia Sinica'' , '''XVIII''' (1975) pp. 444–463</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> Kia-An Yen, "Forme mesurable de la théorie des ensembles sousliniens, applications à la théorie de la mesure" ''Scientia Sinica'' , '''XVIII''' (1975) pp. 444–463</TD></TR></table> |
A concept introduced by B.V. Gnedenko and A.N. Kolmogorov in [1] with the aim of "attaining a full harmony between abstract measure theory and measure theory in metric spaces" . The subsequent development of the theory has revealed other aspects of the value of this concept. On the one hand the class of perfect measures is very wide, and on the other, a number of unpleasant technical complications that occur in general measure theory do not arise if one restricts to perfect measures.
A finite measure $ \mu $
on a $ \sigma $-
algebra $ S $
of subsets of a set $ X $
is called perfect if for any real-valued measurable function $ f $
on $ X $
and any set $ E \subset \mathbf R $
such that $ f ^ { - 1 } ( E) \in S $,
$$
\mu ( f ^ { - 1 } ( E) ) = \inf \
\{ {\mu ( f ^ { - 1 } ( G) ) } : {G \supset E , G \in \mathfrak G } \}
,
$$
where $ \mathfrak G $
is the class of open subsets of $ \mathbf R $.
For $ \mu $
to be perfect, it is necessary that for any real-valued measurable function $ f $
on $ X $
there exists a Borel set $ B \subset f( X) \subset \mathbf R $
such that $ \mu ( f ^ { - 1 } ( B) ) = \mu ( X) $,
and sufficient that for any real-valued measurable function $ f $
on $ X $
and any set $ E \subset \mathbf R $
for which $ f ^ { - 1 } ( E) \in S $
there exists a Borel set $ B \subset E $
such that
$$
\mu ( f ^ { - 1 } ( E) ) = \mu ( f ^ { - 1 } ( B) ) .
$$
Every discrete measure is perfect. A measure defined on a $ \sigma $-
algebra of subsets of a separable metric space that contains all open sets is perfect if and only if the measure of any measurable set is the least upper bound of the measures of its compact subsets. The restriction of a perfect measure $ \mu $
defined on $ S $
to any $ \sigma $-
subalgebra of $ S $
is perfect. A measure induced by a perfect measure $ \mu $
on any subset $ X _ {1} \in S $
with $ \mu ( X _ {1} ) > 0 $
is perfect. The image of a perfect measure $ \mu $
under a measurable mapping of $ ( X , S ) $
into another measurable space is perfect. A measure is perfect if and only if its completion is perfect. For every measure on any $ \sigma $-
subalgebra of a $ \sigma $-
algebra $ S $
of subsets of a set $ X $
to be perfect it is necessary and sufficient that for any real-valued $ S $-
measurable function $ f $
the set $ f ( X) $
is universally measurable (that is, it belongs to the domain of definition of the completion of every Borel measure on $ \mathbf R $).
If $ X \subset \mathbf R $
and if $ S $
is the $ \sigma $-
algebra of Borel subsets of $ X $,
then every measure on $ S $
is perfect if and only if $ X $
is universally measurable.
Every space $ ( X , S , \mu ) $
with a perfect measure such that $ S $
has a countable numbers of generators $ \{ S _ {i} \} $
separating points of $ X $(
that is, for all $ x , y \in X $,
$ x \neq y $,
there is an $ i $:
$ x \in S _ {i} $,
$ y\notin S _ {i} $
or $ x \notin S _ {i} $,
$ y \in S _ {i} $)
is almost isomorphic to some space $ ( L , {\mathcal L} , \lambda ) $,
consisting of the Lebesgue measure on a finite interval and of a countable sequence (possibly empty) of points of positive mass (i.e., there is an $ N \in S $
with $ \mu ( N) = 0 $
and a one-to-one mapping $ \phi $
of $ X \setminus N $
onto $ L $
such that $ \phi $
and $ \phi ^ {-} 1 $
are measurable and $ \lambda = \mu \phi ^ {-} 1 $).
Let $ I $
be any index set and let $ ( X _ {i} , S _ {i} , \mu _ {i} ) $
be a given space with a perfect measure for each $ i \in I $.
Put $ X = \prod _ {i \in I } X _ {i} $
and let $ {\mathcal A} $
be the algebra generated by the class of sets of the form $ \{ {x \in X } : {x _ {i} \in A \in S _ {i} } \} $.
If $ \mu ^ \prime $
is a finitely-additive measure on $ {\mathcal A} $
such that $ \mu ^ \prime ( \{ {x \in S } : {x _ {i} \in A } \} ) = \mu _ {i} ( A) $
for all $ i \in I $
and $ A \in S _ {i} $,
then: 1) $ \mu ^ \prime $
is countably additive on $ A $;
and 2) the extension $ \mu $
of $ \mu ^ \prime $
to the $ \sigma $-
algebra $ S $
generated by $ {\mathcal A} $
is perfect.
Let $ ( X , S , P ) $
be a space with a perfect probability measure and let $ S _ {1} $,
$ S _ {2} $
be two $ \sigma $-
subalgebras of the $ \sigma $-
algebra $ S $,
where $ S _ {1} $
has a countable number of generators. Then there is a regular conditional probability on $ S _ {1} $
given $ S _ {2} $,
i.e. there is a function $ p ( \cdot , \cdot ) $
on $ X \times S _ {1} $
such that: 1) for a fixed $ x $,
$ p ( x , \cdot ) $
is a probability measure on $ S _ {1} $;
2) for a fixed $ E $,
$ p ( \cdot , E ) $
is measurable with respect to $ S _ {2} $;
and 3) $ \int _ {F} p ( x , E ) P ( d x ) = P ( E \cap F ) $
for all $ E \in S _ {1} $
and $ F \in S _ {2} $.
Moreover, the function $ p ( \cdot , \cdot ) $
can be chosen in such a way that the measures $ p ( x , \cdot ) $
are perfect. Let $ ( X , S ) $,
$ ( Y , {\mathcal T} ) $
be two measurable spaces and let $ q ( \cdot , \cdot ) $
be a transition probability on $ X \times {\mathcal T} $,
that is, $ q ( \cdot , E ) $
is measurable with respect to $ S $
and $ q ( x , \cdot ) $
is a probability measure on $ {\mathcal T} $
for all $ x \in X $,
$ E \in {\mathcal T} $.
If the $ q ( x , \cdot ) $
are discrete and $ P $
is a perfect probability measure on $ S $,
then the measure $ \int q ( x , \cdot ) P ( d x ) $
is perfect.
Perfect measures are closely connected with compact measures. A class $ {\mathcal K} $
of subsets of $ X $
is called compact if $ K _ {i} \in {\mathcal K} $,
$ i = 1 , 2 \dots $
and $ \cap _ {i = 1 } ^ \infty K _ {i} = \emptyset $
implies that $ \cap _ {i=} 1 ^ {n} K _ {i} = \emptyset $
for some $ n $.
A finite measure $ \mu $
on $ ( X , S ) $
is called compact if there is a compact class $ {\mathcal K} $
such that for all $ \epsilon > 0 $
and $ E \in S $
one can choose a $ K \in {\mathcal K} $
and an $ E _ {1} \in S $
such that $ E _ {1} \subset K \subset E $
and $ \mu ( E \setminus E _ {1} ) < \epsilon $.
Every compact measure is perfect. For a measure to be perfect it is necessary and sufficient that its restriction to any $ \sigma $-
subalgebra with a countable number of generators be compact.
References
[1] | B.V. Gnedenko, A.N. Kolmogorov, "Limit distributions for sums of independent random variables" , Addison-Wesley (1954) (Translated from Russian) |
[2] | E. Marczewski, "On compact measures" Fund. Math. , 40 (1953) pp. 113–124 |
[3] | C. Ryll-Nardzewski, "On quasi-compact measures" Fund. Math. , 40 (1953) pp. 125–130 |
[4] | V.V. Sazonov, "On perfect measures" Transl. Amer. Math. Soc. (2) , 48 (1965) pp. 229–254 Izv. Akad. Nauk SSSR Ser. Mat. , 26 (1962) pp. 391–414 |
[5] | D. Ramachandran, "Perfect measures" , 1–2 , Macmillan (1979) |
References
[a1] | Kia-An Yen, "Forme mesurable de la théorie des ensembles sousliniens, applications à la théorie de la mesure" Scientia Sinica , XVIII (1975) pp. 444–463 |