|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | p0715001.png |
| + | $#A+1 = 62 n = 0 |
| + | $#C+1 = 62 : ~/encyclopedia/old_files/data/P071/P.0701500 Parametric equation |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| ''of a set of points in a space'' | | ''of a set of points in a space'' |
| | | |
| The specification of the points of the set or of their coordinates by the values of functions of certain variables called parameters. | | The specification of the points of the set or of their coordinates by the values of functions of certain variables called parameters. |
| | | |
− | The parametric representation of a straight line in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p0715001.png" />-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p0715002.png" /> has the form | + | The parametric representation of a straight line in the $ n $- |
− | | + | dimensional vector space $ \mathbf R ^ {n} $ |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p0715003.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | has the form |
− | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p0715004.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p0715005.png" /> are fixed vectors: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p0715006.png" /> is the initial vector and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p0715007.png" /> is a directed vector parallel to the line. If a basis in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p0715008.png" /> is given and if the coordinates of the vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p0715009.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150010.png" /> are denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150012.png" />, respectively, then (1) in coordinate form becomes
| |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150013.png" /></td> </tr></table>
| + | $$ \tag{1 } |
| + | x = x ^ {(} 0) + at ,\ \ |
| + | x ^ {(} 0) , a \in \mathbf R ^ {n} ,\ \ |
| + | - \infty < t < + \infty , |
| + | $$ |
| | | |
− | The parametric representation of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150014.png" />-dimensional affine subspace in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150015.png" /> has the form
| + | where $ x ^ {(} 0) $ |
| + | and $ a $ |
| + | are fixed vectors: $ x ^ {(} 0) $ |
| + | is the initial vector and $ a \neq 0 $ |
| + | is a directed vector parallel to the line. If a basis in $ \mathbf R ^ {n} $ |
| + | is given and if the coordinates of the vectors $ x $ |
| + | and $ a $ |
| + | are denoted by $ x _ {1} \dots x _ {n} $ |
| + | and $ a _ {1} \dots a _ {n} $, |
| + | respectively, then (1) in coordinate form becomes |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150016.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | $$ |
| + | x _ {k} = x _ {k} ^ {(} 0) + a _ {k} t ,\ \ |
| + | - \infty < t < + \infty ,\ \ |
| + | k = 1 \dots n. |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150017.png" /></td> </tr></table>
| + | The parametric representation of an $ m $- |
| + | dimensional affine subspace in $ \mathbf R ^ {n} $ |
| + | has the form |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150018.png" /> is the initial vector corresponding to the value 0 of the parameters <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150019.png" /> and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150020.png" /> form a linearly independent system of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150021.png" /> vectors parallel to the affine subspace in question. In coordinate form (2) becomes
| + | $$ \tag{2 } |
| + | x = x ^ {(} 0) + a ^ {(} 1) t _ {1} + \dots + a ^ {(} m) t _ {m} , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150022.png" /></td> </tr></table> | + | $$ |
| + | x ^ {(} 0) , a ^ {(} j) \in \mathbf R ^ {n} ,\ \ |
| + | - \infty < t _ {j} < + \infty ,\ j = 1 \dots m, |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150023.png" /></td> </tr></table>
| + | where $ x ^ {(} 0) $ |
| + | is the initial vector corresponding to the value 0 of the parameters $ t _ {j} $ |
| + | and the $ a ^ {(} 1) \dots a ^ {(} m) $ |
| + | form a linearly independent system of $ m $ |
| + | vectors parallel to the affine subspace in question. In coordinate form (2) becomes |
| | | |
− | The parametric representation of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150024.png" />-dimensional surface in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150025.png" /> has the form
| + | $$ |
| + | x _ {k} = x _ {k} ^ {(} 0) + |
| + | a _ {k} ^ {(} 1) t _ {1} + \dots + a _ {k} ^ {(} m) t _ {m} , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150026.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table> | + | $$ |
| + | - \infty < t _ {j} < + \infty ,\ j = 1 \dots m; \ k = 1 \dots n. |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150027.png" /> is, for example, the closure of a certain domain in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150028.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150029.png" /> is a mapping of a certain class: continuous, differentiable, continuously differentiable, twice differentiable, etc.; accordingly, the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150030.png" />-dimensional surface is also called continuous, differentiable, etc. (The rank of the Jacobian matrix is supposed to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150031.png" />.) In the case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150032.png" /> the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150033.png" /> is an interval, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150034.png" />, and (3) becomes the parametric representation of a curve: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150036.png" />, in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150037.png" />. For example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150040.png" />, is a parametric representation in the plane of the circle of radius 1 with centre at the coordinate origin.
| + | The parametric representation of an $ m $- |
| + | dimensional surface in $ \mathbf R ^ {n} $ |
| + | has the form |
| | | |
− | For the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150041.png" /> on which the parametric representation is given one sometimes takes instead of the closure of an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150042.png" />-dimensional domain a subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150043.png" /> of another kind.
| + | $$ \tag{3 } |
| + | x = x( t) = x( t _ {1} \dots t _ {m} ),\ \ |
| + | t = ( t _ {1} \dots t _ {m} ) \in E \subset \mathbf R ^ {m} , |
| + | $$ |
| | | |
| + | where $ E $ |
| + | is, for example, the closure of a certain domain in $ \mathbf R ^ {m} $ |
| + | and $ x: E \rightarrow \mathbf R ^ {n} $ |
| + | is a mapping of a certain class: continuous, differentiable, continuously differentiable, twice differentiable, etc.; accordingly, the $ m $- |
| + | dimensional surface is also called continuous, differentiable, etc. (The rank of the Jacobian matrix is supposed to be $ m $.) |
| + | In the case $ m= 1 $ |
| + | the set $ E $ |
| + | is an interval, $ E = [ a, b] $, |
| + | and (3) becomes the parametric representation of a curve: $ x = x( t) $, |
| + | $ a \leq t \leq b $, |
| + | in $ \mathbf R ^ {n} $. |
| + | For example, $ x _ {1} = \cos t $, |
| + | $ x _ {2} = \sin t $, |
| + | $ 0 \leq t \leq 2 \pi $, |
| + | is a parametric representation in the plane of the circle of radius 1 with centre at the coordinate origin. |
| | | |
| + | For the set $ E $ |
| + | on which the parametric representation is given one sometimes takes instead of the closure of an $ m $- |
| + | dimensional domain a subset of $ \mathbf R ^ {m} $ |
| + | of another kind. |
| | | |
| ====Comments==== | | ====Comments==== |
− | A parametric equation or parametric representation for an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150044.png" />-dimensional surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150045.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150046.png" /> (or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150047.png" />) need not be of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150048.png" />. I.e. any surjective mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150049.png" /> with as image (an open piece of) the surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150050.png" /> is a (local) parametric representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150051.png" />. | + | A parametric equation or parametric representation for an $ m $- |
| + | dimensional surface $ S $ |
| + | in $ \mathbf R ^ {n} $( |
| + | or $ \mathbf C ^ {n} $) |
| + | need not be of dimension $ m $. |
| + | I.e. any surjective mapping $ \mathbf R ^ {n} \supset E \rightarrow \mathbf R ^ {n} $ |
| + | with as image (an open piece of) the surface $ S $ |
| + | is a (local) parametric representation of $ S $. |
| | | |
− | A [[Chart|chart]] is a local parametric representation (equation) for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150052.png" /> of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150053.png" />. Given a chart <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150054.png" /> of a surface <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150055.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150056.png" />, the curves <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150057.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150058.png" /> fixed, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150059.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150060.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150061.png" /> fixed, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071500/p07150062.png" />, are called parametric curves. | + | A [[Chart|chart]] is a local parametric representation (equation) for $ S $ |
| + | of dimension $ \mathop{\rm dim} ( S) $. |
| + | Given a chart $ r( u, v) $ |
| + | of a surface $ S $ |
| + | in $ \mathbf R ^ {3} $, |
| + | the curves $ r( u _ {0} , v) $, |
| + | $ u _ {0} $ |
| + | fixed, $ v \in \mathbf R $, |
| + | and $ r( u, v _ {0} ) $, |
| + | $ v _ {0} $ |
| + | fixed, $ u \in \mathbf R $, |
| + | are called parametric curves. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D.J. Struik, "Lectures on classical differential geometry" , Dover, reprint (1988)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D.J. Struik, "Lectures on classical differential geometry" , Dover, reprint (1988)</TD></TR></table> |
of a set of points in a space
The specification of the points of the set or of their coordinates by the values of functions of certain variables called parameters.
The parametric representation of a straight line in the $ n $-
dimensional vector space $ \mathbf R ^ {n} $
has the form
$$ \tag{1 }
x = x ^ {(} 0) + at ,\ \
x ^ {(} 0) , a \in \mathbf R ^ {n} ,\ \
- \infty < t < + \infty ,
$$
where $ x ^ {(} 0) $
and $ a $
are fixed vectors: $ x ^ {(} 0) $
is the initial vector and $ a \neq 0 $
is a directed vector parallel to the line. If a basis in $ \mathbf R ^ {n} $
is given and if the coordinates of the vectors $ x $
and $ a $
are denoted by $ x _ {1} \dots x _ {n} $
and $ a _ {1} \dots a _ {n} $,
respectively, then (1) in coordinate form becomes
$$
x _ {k} = x _ {k} ^ {(} 0) + a _ {k} t ,\ \
- \infty < t < + \infty ,\ \
k = 1 \dots n.
$$
The parametric representation of an $ m $-
dimensional affine subspace in $ \mathbf R ^ {n} $
has the form
$$ \tag{2 }
x = x ^ {(} 0) + a ^ {(} 1) t _ {1} + \dots + a ^ {(} m) t _ {m} ,
$$
$$
x ^ {(} 0) , a ^ {(} j) \in \mathbf R ^ {n} ,\ \
- \infty < t _ {j} < + \infty ,\ j = 1 \dots m,
$$
where $ x ^ {(} 0) $
is the initial vector corresponding to the value 0 of the parameters $ t _ {j} $
and the $ a ^ {(} 1) \dots a ^ {(} m) $
form a linearly independent system of $ m $
vectors parallel to the affine subspace in question. In coordinate form (2) becomes
$$
x _ {k} = x _ {k} ^ {(} 0) +
a _ {k} ^ {(} 1) t _ {1} + \dots + a _ {k} ^ {(} m) t _ {m} ,
$$
$$
- \infty < t _ {j} < + \infty ,\ j = 1 \dots m; \ k = 1 \dots n.
$$
The parametric representation of an $ m $-
dimensional surface in $ \mathbf R ^ {n} $
has the form
$$ \tag{3 }
x = x( t) = x( t _ {1} \dots t _ {m} ),\ \
t = ( t _ {1} \dots t _ {m} ) \in E \subset \mathbf R ^ {m} ,
$$
where $ E $
is, for example, the closure of a certain domain in $ \mathbf R ^ {m} $
and $ x: E \rightarrow \mathbf R ^ {n} $
is a mapping of a certain class: continuous, differentiable, continuously differentiable, twice differentiable, etc.; accordingly, the $ m $-
dimensional surface is also called continuous, differentiable, etc. (The rank of the Jacobian matrix is supposed to be $ m $.)
In the case $ m= 1 $
the set $ E $
is an interval, $ E = [ a, b] $,
and (3) becomes the parametric representation of a curve: $ x = x( t) $,
$ a \leq t \leq b $,
in $ \mathbf R ^ {n} $.
For example, $ x _ {1} = \cos t $,
$ x _ {2} = \sin t $,
$ 0 \leq t \leq 2 \pi $,
is a parametric representation in the plane of the circle of radius 1 with centre at the coordinate origin.
For the set $ E $
on which the parametric representation is given one sometimes takes instead of the closure of an $ m $-
dimensional domain a subset of $ \mathbf R ^ {m} $
of another kind.
A parametric equation or parametric representation for an $ m $-
dimensional surface $ S $
in $ \mathbf R ^ {n} $(
or $ \mathbf C ^ {n} $)
need not be of dimension $ m $.
I.e. any surjective mapping $ \mathbf R ^ {n} \supset E \rightarrow \mathbf R ^ {n} $
with as image (an open piece of) the surface $ S $
is a (local) parametric representation of $ S $.
A chart is a local parametric representation (equation) for $ S $
of dimension $ \mathop{\rm dim} ( S) $.
Given a chart $ r( u, v) $
of a surface $ S $
in $ \mathbf R ^ {3} $,
the curves $ r( u _ {0} , v) $,
$ u _ {0} $
fixed, $ v \in \mathbf R $,
and $ r( u, v _ {0} ) $,
$ v _ {0} $
fixed, $ u \in \mathbf R $,
are called parametric curves.
References
[a1] | D.J. Struik, "Lectures on classical differential geometry" , Dover, reprint (1988) |