Difference between revisions of "Paley-Wiener theorem"
Ulf Rehmann (talk | contribs) m (moved Paley–Wiener theorem to Paley-Wiener theorem: ascii title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | p0711201.png | ||
| + | $#A+1 = 29 n = 0 | ||
| + | $#C+1 = 29 : ~/encyclopedia/old_files/data/P071/P.0701120 Paley\ANDWiener theorem | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| + | |||
| + | A function $ f \in L _ {2} ( - \infty , + \infty ) $ | ||
| + | vanishes almost everywhere outside an interval $ [ - A , A ] $ | ||
| + | if and only if its [[Fourier transform|Fourier transform]] | ||
| + | |||
| + | $$ | ||
| + | F ( y) = \ | ||
| + | \int\limits _ {- \infty } ^ { {+ } \infty } f ( x) e ^ {ixy} d x ,\ y \in \mathbf R , | ||
| + | $$ | ||
satisfies | satisfies | ||
| − | + | $$ | |
| + | \int\limits _ {- \infty } ^ { {+ } \infty } | F ( y) | ^ {2} d y < \infty | ||
| + | $$ | ||
| − | and is the restriction to the real line of a certain entire analytic function | + | and is the restriction to the real line of a certain entire analytic function $ F ( z) $ |
| + | of a complex variable $ z $ | ||
| + | satisfying $ | F ( z) | \leq e ^ {A | z | } $ | ||
| + | for all $ z \in \mathbf C $( | ||
| + | see [[#References|[1]]]). A description of the image of a certain space of functions or generalized functions on a locally compact group under the [[Fourier transform|Fourier transform]] or under some other injective integral transform is called an analogue of the Paley–Wiener theorem; the most frequently encountered analogues of the Paley–Wiener theorem are a description of the image of the space $ C _ {0} ^ \infty ( G) $ | ||
| + | of infinitely-differentiable functions of compact support and a description of the image of the space $ S ( G) $ | ||
| + | of rapidly-decreasing infinitely-differentiable functions on a locally compact group $ G $ | ||
| + | under the Fourier transform on $ G $. | ||
| + | Such analogues are known, in particular, for Abelian locally compact groups, for certain connected Lie groups, for certain subalgebras of the algebra $ C _ {0} ^ \infty ( G) $ | ||
| + | on real semi-simple Lie groups, and also for certain other integral transforms. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Wiener, R.E.A.C. Paley, "Fourier transforms in the complex domain" , Amer. Math. Soc. (1934)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.S. Vladimirov, "Generalized functions in mathematical physics" , MIR (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.M. Gel'fand, M.I. Graev, N.Ya. Vilenkin, "Generalized functions" , '''5. Integral geometry and representation theory''' , Acad. Press (1966) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> D.P. Zhelobenko, "Harmonic analysis of functions on semi-simple complex Lie groups" , Moscow (1974) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> W. Rudin, "Functional analysis" , McGraw-Hill (1973)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Wiener, R.E.A.C. Paley, "Fourier transforms in the complex domain" , Amer. Math. Soc. (1934)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.S. Vladimirov, "Generalized functions in mathematical physics" , MIR (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.M. Gel'fand, M.I. Graev, N.Ya. Vilenkin, "Generalized functions" , '''5. Integral geometry and representation theory''' , Acad. Press (1966) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> D.P. Zhelobenko, "Harmonic analysis of functions on semi-simple complex Lie groups" , Moscow (1974) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> W. Rudin, "Functional analysis" , McGraw-Hill (1973)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | Let | + | Let $ \phi \in C _ {0} ^ \infty ( \mathbf R ) $ |
| + | with $ \supp \phi \subset [- A, A] $. | ||
| + | Then the Fourier transform $ \widehat \phi $ | ||
| + | of $ \phi $ | ||
| + | can be extended to an entire analytic function on $ \mathbf C $ | ||
| + | satisfying: for any integer $ m \geq 0 $ | ||
| + | there is a constant $ c _ {m} > 0 $ | ||
| + | such that for all $ w \in \mathbf C $, | ||
| − | + | $$ \tag{* } | |
| + | | \widehat \phi ( w) | \leq c _ {m} ( 1+ | w | ) ^ {-} m | ||
| + | e ^ {2 \pi A | \mathop{\rm Im} w | } . | ||
| + | $$ | ||
| − | Conversely, let | + | Conversely, let $ F: \mathbf C \rightarrow \mathbf C $ |
| + | be an entire function which satisfies (*) (replacing $ \widehat \phi $ | ||
| + | with $ F $), | ||
| + | for some $ A > 0 $. | ||
| + | Then there exists a $ \phi \in C _ {0} ^ \infty ( \mathbf R ) $ | ||
| + | with $ \supp \phi \subset [- A, A] $ | ||
| + | and $ \widehat \phi = F $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F. Trèves, "Topological vectorspaces, distributions and kernels" , Acad. Press (1967)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Warner, "Harmonic analysis on semi-simple Lie groups" , '''II''' , Springer (1972)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> Y. Katznelson, "An introduction to harmonic analysis" , Dover, reprint (1976)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> F. Trèves, "Topological vectorspaces, distributions and kernels" , Acad. Press (1967)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Warner, "Harmonic analysis on semi-simple Lie groups" , '''II''' , Springer (1972)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> Y. Katznelson, "An introduction to harmonic analysis" , Dover, reprint (1976)</TD></TR></table> | ||
Latest revision as of 08:04, 6 June 2020
A function $ f \in L _ {2} ( - \infty , + \infty ) $
vanishes almost everywhere outside an interval $ [ - A , A ] $
if and only if its Fourier transform
$$ F ( y) = \ \int\limits _ {- \infty } ^ { {+ } \infty } f ( x) e ^ {ixy} d x ,\ y \in \mathbf R , $$
satisfies
$$ \int\limits _ {- \infty } ^ { {+ } \infty } | F ( y) | ^ {2} d y < \infty $$
and is the restriction to the real line of a certain entire analytic function $ F ( z) $ of a complex variable $ z $ satisfying $ | F ( z) | \leq e ^ {A | z | } $ for all $ z \in \mathbf C $( see [1]). A description of the image of a certain space of functions or generalized functions on a locally compact group under the Fourier transform or under some other injective integral transform is called an analogue of the Paley–Wiener theorem; the most frequently encountered analogues of the Paley–Wiener theorem are a description of the image of the space $ C _ {0} ^ \infty ( G) $ of infinitely-differentiable functions of compact support and a description of the image of the space $ S ( G) $ of rapidly-decreasing infinitely-differentiable functions on a locally compact group $ G $ under the Fourier transform on $ G $. Such analogues are known, in particular, for Abelian locally compact groups, for certain connected Lie groups, for certain subalgebras of the algebra $ C _ {0} ^ \infty ( G) $ on real semi-simple Lie groups, and also for certain other integral transforms.
References
| [1] | N. Wiener, R.E.A.C. Paley, "Fourier transforms in the complex domain" , Amer. Math. Soc. (1934) |
| [2] | V.S. Vladimirov, "Generalized functions in mathematical physics" , MIR (1977) (Translated from Russian) |
| [3] | I.M. Gel'fand, M.I. Graev, N.Ya. Vilenkin, "Generalized functions" , 5. Integral geometry and representation theory , Acad. Press (1966) (Translated from Russian) |
| [4] | D.P. Zhelobenko, "Harmonic analysis of functions on semi-simple complex Lie groups" , Moscow (1974) (In Russian) |
| [5] | W. Rudin, "Functional analysis" , McGraw-Hill (1973) |
Comments
Let $ \phi \in C _ {0} ^ \infty ( \mathbf R ) $ with $ \supp \phi \subset [- A, A] $. Then the Fourier transform $ \widehat \phi $ of $ \phi $ can be extended to an entire analytic function on $ \mathbf C $ satisfying: for any integer $ m \geq 0 $ there is a constant $ c _ {m} > 0 $ such that for all $ w \in \mathbf C $,
$$ \tag{* } | \widehat \phi ( w) | \leq c _ {m} ( 1+ | w | ) ^ {-} m e ^ {2 \pi A | \mathop{\rm Im} w | } . $$
Conversely, let $ F: \mathbf C \rightarrow \mathbf C $ be an entire function which satisfies (*) (replacing $ \widehat \phi $ with $ F $), for some $ A > 0 $. Then there exists a $ \phi \in C _ {0} ^ \infty ( \mathbf R ) $ with $ \supp \phi \subset [- A, A] $ and $ \widehat \phi = F $.
References
| [a1] | F. Trèves, "Topological vectorspaces, distributions and kernels" , Acad. Press (1967) |
| [a2] | G. Warner, "Harmonic analysis on semi-simple Lie groups" , II , Springer (1972) |
| [a3] | S. Helgason, "Groups and geometric analysis" , Acad. Press (1984) pp. Chapt. II, Sect. 4 |
| [a4] | Y. Katznelson, "An introduction to harmonic analysis" , Dover, reprint (1976) |
Paley-Wiener theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Paley-Wiener_theorem&oldid=48100