Difference between revisions of "Optional sigma-algebra"
m (wikilink) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | o0685702.png | ||
+ | $#A+1 = 23 n = 0 | ||
+ | $#C+1 = 23 : ~/encyclopedia/old_files/data/O068/O.0608570 Optional sigma\AAhalgebra, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | The smallest | + | {{TEX|auto}} |
+ | {{TEX|done}} | ||
+ | |||
+ | ''optional $ \sigma $- | ||
+ | algebra'' | ||
+ | |||
+ | The smallest $ \sigma $- | ||
+ | algebra $ {\mathcal O} = {\mathcal O} ( \mathbf F ) $ | ||
+ | of sets (cf. [[Algebra of sets|Algebra of sets]]) in $ \Omega \times \mathbf R _ {+} = \{ {( \omega , t) } : {\omega \in \Omega, t \geq 0 } \} $ | ||
+ | generated by all mappings $ ( \omega , t) \rightarrow f( \omega , t) $ | ||
+ | of the set $ \Omega \times \mathbf R _ {+} $ | ||
+ | into $ \mathbf R $ | ||
+ | which (for every fixed $ \omega \in \Omega $) | ||
+ | are continuous from the right (in $ t $), | ||
+ | have limits from the left and are adapted to a (given) non-decreasing family $ \mathbf F = ( F _ {t} ) _ {t \geq 0 } $ | ||
+ | of sub- $ \sigma $- | ||
+ | algebras $ F _ {t} \subseteq F $, | ||
+ | $ t \geq 0 $, | ||
+ | where $ ( \Omega , F ) $ | ||
+ | is a measurable space. The optional $ \sigma $- | ||
+ | algebra coincides with the smallest $ \sigma $- | ||
+ | algebra generated by the [[stochastic interval]]s $ [ 0, \tau ] = \{ {( \omega , t) } : {0 \leq t < \tau ( \omega ) } \} $, | ||
+ | where $ \tau = \tau ( \omega ) $ | ||
+ | are stopping times (relative to $ \mathbf F = ( F _ {t} ) _ {t \geq 0 } $) | ||
+ | (cf. [[Markov moment|Markov moment]]). The inclusion $ {\mathcal P} ( \mathbf F ) \subseteq {\mathcal O} ( \mathbf F ) $ | ||
+ | holds between the optional and predictable $ \sigma $- | ||
+ | algebras (cf. [[Predictable sigma-algebra|Predictable sigma-algebra]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Dellacherie, "Capacités et processus stochastiques" , Springer (1972)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> C. Dellacherie, "Capacités et processus stochastiques" , Springer (1972)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | In [[#References|[a1]]] the optional | + | In [[#References|[a1]]] the optional $ \sigma $- |
+ | field is called the well-measurable $ \sigma $- | ||
+ | field. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Dellacherie, P.A. Meyer, "Probabilities and potential" , '''A''' , North-Holland (1978) (Translated from French)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Dellacherie, P.A. Meyer, "Probabilities and potential" , '''A''' , North-Holland (1978) (Translated from French)</TD></TR></table> |
Latest revision as of 08:04, 6 June 2020
optional $ \sigma $-
algebra
The smallest $ \sigma $- algebra $ {\mathcal O} = {\mathcal O} ( \mathbf F ) $ of sets (cf. Algebra of sets) in $ \Omega \times \mathbf R _ {+} = \{ {( \omega , t) } : {\omega \in \Omega, t \geq 0 } \} $ generated by all mappings $ ( \omega , t) \rightarrow f( \omega , t) $ of the set $ \Omega \times \mathbf R _ {+} $ into $ \mathbf R $ which (for every fixed $ \omega \in \Omega $) are continuous from the right (in $ t $), have limits from the left and are adapted to a (given) non-decreasing family $ \mathbf F = ( F _ {t} ) _ {t \geq 0 } $ of sub- $ \sigma $- algebras $ F _ {t} \subseteq F $, $ t \geq 0 $, where $ ( \Omega , F ) $ is a measurable space. The optional $ \sigma $- algebra coincides with the smallest $ \sigma $- algebra generated by the stochastic intervals $ [ 0, \tau ] = \{ {( \omega , t) } : {0 \leq t < \tau ( \omega ) } \} $, where $ \tau = \tau ( \omega ) $ are stopping times (relative to $ \mathbf F = ( F _ {t} ) _ {t \geq 0 } $) (cf. Markov moment). The inclusion $ {\mathcal P} ( \mathbf F ) \subseteq {\mathcal O} ( \mathbf F ) $ holds between the optional and predictable $ \sigma $- algebras (cf. Predictable sigma-algebra).
References
[1] | C. Dellacherie, "Capacités et processus stochastiques" , Springer (1972) |
Comments
In [a1] the optional $ \sigma $- field is called the well-measurable $ \sigma $- field.
References
[a1] | C. Dellacherie, P.A. Meyer, "Probabilities and potential" , A , North-Holland (1978) (Translated from French) |
Optional sigma-algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Optional_sigma-algebra&oldid=48061