Difference between revisions of "Normalized system"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | n0677201.png | ||
+ | $#A+1 = 11 n = 0 | ||
+ | $#C+1 = 11 : ~/encyclopedia/old_files/data/N067/N.0607720 Normalized system | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A system $ \{ x _ {i} \} $ | |
+ | of elements of a [[Banach space|Banach space]] $ B $ | ||
+ | whose norms are all equal to one, $ \| x _ {i} \| _ {B} = 1 $. | ||
+ | In particular, a system $ \{ f _ {i} \} $ | ||
+ | of functions in the space $ L _ {2} [ a, b] $ | ||
+ | is said to be normalized if | ||
+ | |||
+ | $$ | ||
+ | \int\limits _ { a } ^ { b } | f _ {i} ( x) | ^ {2} dx = 1. | ||
+ | $$ | ||
+ | |||
+ | Normalization of a system $ \{ x _ {i} \} $ | ||
+ | of non-zero elements of a Banach space $ B $ | ||
+ | means the construction of a normalized system of the form $ \{ \lambda _ {i} x _ {i} \} $, | ||
+ | where the $ \lambda _ {i} $ | ||
+ | are non-zero numbers, the so-called normalizing factors. As a sequence of normalizing factors one can take $ \lambda _ {i} = 1/ \| x _ {i} \| _ {B} $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.V. Kantorovich, G.P. Akilov, "Functionalanalysis in normierten Räumen" , Akademie Verlag (1964) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Dunford, J.T. Schwartz, "Linear operators. General theory" , '''1''' , Interscience (1958)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.V. Kantorovich, G.P. Akilov, "Functionalanalysis in normierten Räumen" , Akademie Verlag (1964) (Translated from Russian)</TD></TR></table> |
Latest revision as of 08:03, 6 June 2020
A system $ \{ x _ {i} \} $
of elements of a Banach space $ B $
whose norms are all equal to one, $ \| x _ {i} \| _ {B} = 1 $.
In particular, a system $ \{ f _ {i} \} $
of functions in the space $ L _ {2} [ a, b] $
is said to be normalized if
$$ \int\limits _ { a } ^ { b } | f _ {i} ( x) | ^ {2} dx = 1. $$
Normalization of a system $ \{ x _ {i} \} $ of non-zero elements of a Banach space $ B $ means the construction of a normalized system of the form $ \{ \lambda _ {i} x _ {i} \} $, where the $ \lambda _ {i} $ are non-zero numbers, the so-called normalizing factors. As a sequence of normalizing factors one can take $ \lambda _ {i} = 1/ \| x _ {i} \| _ {B} $.
References
[1] | S. Kaczmarz, H. Steinhaus, "Theorie der Orthogonalreihen" , Chelsea, reprint (1951) |
[2] | N. Dunford, J.T. Schwartz, "Linear operators. General theory" , 1 , Interscience (1958) |
[3] | L.V. Kantorovich, G.P. Akilov, "Functionalanalysis in normierten Räumen" , Akademie Verlag (1964) (Translated from Russian) |
Normalized system. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normalized_system&oldid=48019