|
|
Line 1: |
Line 1: |
− | ''of a finite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n0675803.png" />''
| + | <!-- |
| + | n0675803.png |
| + | $#A+1 = 44 n = 0 |
| + | $#C+1 = 44 : ~/encyclopedia/old_files/data/N067/N.0607580 Normal \BMI p\EMI\AAhcomplement |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | A normal subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n0675804.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n0675805.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n0675806.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n0675807.png" /> is a Sylow <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n0675808.png" />-subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n0675809.png" /> (see [[Sylow subgroup|Sylow subgroup]]). A group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758010.png" /> has a normal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758011.png" />-complement if some Sylow <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758012.png" />-subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758013.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758014.png" /> lies in the centre of its normalizer (cf. [[Normalizer of a subset|Normalizer of a subset]]) (Burnside's theorem). A necessary and sufficient condition for the existence of a normal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758015.png" />-complement in a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758016.png" /> is given by Frobenius' theorem: A group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758018.png" /> has a normal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758019.png" />-complement if and only either for any non-trivial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758020.png" />-subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758021.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758022.png" /> the quotient group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758023.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758024.png" />-group (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758025.png" /> is the normalizer and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758026.png" /> the [[Centralizer|centralizer]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758027.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758028.png" />) or if for every non-trivial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758029.png" />-subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758030.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758031.png" /> the subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758032.png" /> has a normal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758033.png" />-complement. | + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| + | ''of a finite group $ G $'' |
| + | |
| + | A normal subgroup $ A $ |
| + | such that $ G = AS $ |
| + | and $ A \cap S = 1 $, |
| + | where $ S $ |
| + | is a Sylow $ p $- |
| + | subgroup of $ G $( |
| + | see [[Sylow subgroup|Sylow subgroup]]). A group $ G $ |
| + | has a normal $ p $- |
| + | complement if some Sylow $ p $- |
| + | subgroup $ S $ |
| + | of $ G $ |
| + | lies in the centre of its normalizer (cf. [[Normalizer of a subset|Normalizer of a subset]]) (Burnside's theorem). A necessary and sufficient condition for the existence of a normal $ p $- |
| + | complement in a group $ G $ |
| + | is given by Frobenius' theorem: A group $ G $ |
| + | has a normal $ p $- |
| + | complement if and only either for any non-trivial $ p $- |
| + | subgroup $ H $ |
| + | of $ G $ |
| + | the quotient group $ N _ {G} ( H)/ C _ {G} ( H) $ |
| + | is a $ p $- |
| + | group (where $ N _ {G} ( H) $ |
| + | is the normalizer and $ C _ {G} ( H) $ |
| + | the [[Centralizer|centralizer]] of $ H $ |
| + | in $ G $) |
| + | or if for every non-trivial $ p $- |
| + | subgroup $ H $ |
| + | of $ G $ |
| + | the subgroup $ N _ {G} ( H) $ |
| + | has a normal $ p $- |
| + | complement. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Gorenstein, "Finite groups" , Harper & Row (1968)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Gorenstein, "Finite groups" , Harper & Row (1968)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758034.png" /> be a group of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758035.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758036.png" /> be the highest power of a prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758037.png" /> dividing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758038.png" />. A subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758039.png" /> of index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758040.png" /> (and hence of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758041.png" />) is called a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758043.png" />-complement in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758044.png" />. A normal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758045.png" />-complement is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758046.png" />-complement that is normal. A finite group is solvable if and only if it has a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758047.png" />-complement for every prime number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067580/n06758048.png" /> dividing its order. Cf. [[#References|[a1]]], [[#References|[a2]]] for more details; cf. also [[Hall subgroup|Hall subgroup]]. | + | Let $ G $ |
| + | be a group of order $ n $ |
| + | and let $ p ^ {e} $ |
| + | be the highest power of a prime number $ p $ |
| + | dividing $ n $. |
| + | A subgroup of $ G $ |
| + | of index $ p ^ {e} $( |
| + | and hence of order $ p ^ {-} e n $) |
| + | is called a $ p $- |
| + | complement in $ G $. |
| + | A normal $ p $- |
| + | complement is a $ p $- |
| + | complement that is normal. A finite group is solvable if and only if it has a $ p $- |
| + | complement for every prime number $ p $ |
| + | dividing its order. Cf. [[#References|[a1]]], [[#References|[a2]]] for more details; cf. also [[Hall subgroup|Hall subgroup]]. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Hall jr., "The theory of groups" , Macmillan (1959) pp. Sect. 9.3</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> B. Huppert, "Endliche Gruppen" , '''1''' , Springer (1967) pp. Sect. VI.1</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Hall jr., "The theory of groups" , Macmillan (1959) pp. Sect. 9.3</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> B. Huppert, "Endliche Gruppen" , '''1''' , Springer (1967) pp. Sect. VI.1</TD></TR></table> |
of a finite group $ G $
A normal subgroup $ A $
such that $ G = AS $
and $ A \cap S = 1 $,
where $ S $
is a Sylow $ p $-
subgroup of $ G $(
see Sylow subgroup). A group $ G $
has a normal $ p $-
complement if some Sylow $ p $-
subgroup $ S $
of $ G $
lies in the centre of its normalizer (cf. Normalizer of a subset) (Burnside's theorem). A necessary and sufficient condition for the existence of a normal $ p $-
complement in a group $ G $
is given by Frobenius' theorem: A group $ G $
has a normal $ p $-
complement if and only either for any non-trivial $ p $-
subgroup $ H $
of $ G $
the quotient group $ N _ {G} ( H)/ C _ {G} ( H) $
is a $ p $-
group (where $ N _ {G} ( H) $
is the normalizer and $ C _ {G} ( H) $
the centralizer of $ H $
in $ G $)
or if for every non-trivial $ p $-
subgroup $ H $
of $ G $
the subgroup $ N _ {G} ( H) $
has a normal $ p $-
complement.
References
[1] | D. Gorenstein, "Finite groups" , Harper & Row (1968) |
Let $ G $
be a group of order $ n $
and let $ p ^ {e} $
be the highest power of a prime number $ p $
dividing $ n $.
A subgroup of $ G $
of index $ p ^ {e} $(
and hence of order $ p ^ {-} e n $)
is called a $ p $-
complement in $ G $.
A normal $ p $-
complement is a $ p $-
complement that is normal. A finite group is solvable if and only if it has a $ p $-
complement for every prime number $ p $
dividing its order. Cf. [a1], [a2] for more details; cf. also Hall subgroup.
References
[a1] | M. Hall jr., "The theory of groups" , Macmillan (1959) pp. Sect. 9.3 |
[a2] | B. Huppert, "Endliche Gruppen" , 1 , Springer (1967) pp. Sect. VI.1 |