Difference between revisions of "Normal convergence"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | n0674301.png | ||
+ | $#A+1 = 29 n = 0 | ||
+ | $#C+1 = 29 : ~/encyclopedia/old_files/data/N067/N.0607430 Normal convergence | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
Convergence of a series | Convergence of a series | ||
− | + | $$ \tag{1 } | |
+ | f = \sum _ { k= } 1 ^ \infty u _ {k} $$ | ||
− | formed by bounded mappings | + | formed by bounded mappings $ u _ {k} : X \rightarrow Y $ |
+ | from a set $ X $ | ||
+ | into a normed space $ Y $, | ||
+ | such that the series with positive terms $ \sum _ {k=} 1 ^ \infty \| u _ {k} \| $ | ||
+ | formed by the norms of the mappings, | ||
− | + | $$ | |
+ | \| u _ {k} \| = \ | ||
+ | \sup \{ {\| u _ {k} ( x) \| } : {x \in X } \} | ||
+ | , | ||
+ | $$ | ||
converges. | converges. | ||
− | Normal convergence of the series (1) implies absolute and uniform convergence of the series | + | Normal convergence of the series (1) implies absolute and uniform convergence of the series $ \sum _ {k=} 1 ^ \infty u _ {k} ( x) $ |
+ | consisting of elements of $ Y $; | ||
+ | the converse is not true. For example, if $ u _ {k} : \mathbf R \rightarrow \mathbf R $ | ||
+ | is the real-valued function defined by $ u _ {k} ( x) = ( \sin \pi x ) / k $ | ||
+ | for $ k \leq x \leq k + 1 $ | ||
+ | and $ u _ {k} ( x) = 0 $ | ||
+ | for $ x \in \mathbf R \setminus [ k, k+ 1] $, | ||
+ | then the series $ \sum _ {k=} 1 ^ \infty u _ {k} ( x) $ | ||
+ | converges absolutely, whereas $ \sum _ {k=} 1 ^ \infty \| u _ {k} \| = \sum _ {k=} 1 ^ \infty 1 / k $ | ||
+ | diverges. | ||
− | Suppose, in particular, that each | + | Suppose, in particular, that each $ u _ {k} : \mathbf R \rightarrow Y $ |
+ | is a piecewise-continuous function on a non-compact interval $ I \subset \mathbf R $ | ||
+ | and that (1) converges normally. Then one can integrate term-by-term on $ I $: | ||
− | + | $$ | |
+ | \int\limits _ { I } f ( t) d t = \ | ||
+ | \sum _ { k= } 1 ^ \infty \int\limits _ { I } u _ {k} ( t) d t . | ||
+ | $$ | ||
− | Let | + | Let $ f: I \times A \rightarrow Y $, |
+ | where $ I \subset \mathbf R $ | ||
+ | is an interval, have left and right limits at each point of $ I $. | ||
+ | Then the improper integral | ||
− | + | $$ \tag{2 } | |
+ | \int\limits _ { I } f ( t ; \lambda ) d t ,\ \ | ||
+ | \lambda \in A , | ||
+ | $$ | ||
− | is called normally convergent on | + | is called normally convergent on $ A $ |
+ | if there exists a piecewise-continuous positive function $ g : \mathbf R \rightarrow \mathbf R $ | ||
+ | such that: 1) $ \| f( x ; \lambda ) \| \leq g ( x) $ | ||
+ | for any $ x \in I $ | ||
+ | and any $ \lambda \in A $; | ||
+ | and 2) the integral $ \int _ {I} g ( t) d t $ | ||
+ | converges. Normal convergence of (2) implies its absolute and uniform convergence; the converse is not true. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. General topology" , Addison-Wesley (1966) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Functions of a real variable" , Addison-Wesley (1976) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. Schwartz, "Cours d'analyse" , '''1''' , Hermann (1967)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. General topology" , Addison-Wesley (1966) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Functions of a real variable" , Addison-Wesley (1976) (Translated from French)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L. Schwartz, "Cours d'analyse" , '''1''' , Hermann (1967)</TD></TR></table> |
Revision as of 08:03, 6 June 2020
Convergence of a series
$$ \tag{1 } f = \sum _ { k= } 1 ^ \infty u _ {k} $$
formed by bounded mappings $ u _ {k} : X \rightarrow Y $ from a set $ X $ into a normed space $ Y $, such that the series with positive terms $ \sum _ {k=} 1 ^ \infty \| u _ {k} \| $ formed by the norms of the mappings,
$$ \| u _ {k} \| = \ \sup \{ {\| u _ {k} ( x) \| } : {x \in X } \} , $$
converges.
Normal convergence of the series (1) implies absolute and uniform convergence of the series $ \sum _ {k=} 1 ^ \infty u _ {k} ( x) $ consisting of elements of $ Y $; the converse is not true. For example, if $ u _ {k} : \mathbf R \rightarrow \mathbf R $ is the real-valued function defined by $ u _ {k} ( x) = ( \sin \pi x ) / k $ for $ k \leq x \leq k + 1 $ and $ u _ {k} ( x) = 0 $ for $ x \in \mathbf R \setminus [ k, k+ 1] $, then the series $ \sum _ {k=} 1 ^ \infty u _ {k} ( x) $ converges absolutely, whereas $ \sum _ {k=} 1 ^ \infty \| u _ {k} \| = \sum _ {k=} 1 ^ \infty 1 / k $ diverges.
Suppose, in particular, that each $ u _ {k} : \mathbf R \rightarrow Y $ is a piecewise-continuous function on a non-compact interval $ I \subset \mathbf R $ and that (1) converges normally. Then one can integrate term-by-term on $ I $:
$$ \int\limits _ { I } f ( t) d t = \ \sum _ { k= } 1 ^ \infty \int\limits _ { I } u _ {k} ( t) d t . $$
Let $ f: I \times A \rightarrow Y $, where $ I \subset \mathbf R $ is an interval, have left and right limits at each point of $ I $. Then the improper integral
$$ \tag{2 } \int\limits _ { I } f ( t ; \lambda ) d t ,\ \ \lambda \in A , $$
is called normally convergent on $ A $ if there exists a piecewise-continuous positive function $ g : \mathbf R \rightarrow \mathbf R $ such that: 1) $ \| f( x ; \lambda ) \| \leq g ( x) $ for any $ x \in I $ and any $ \lambda \in A $; and 2) the integral $ \int _ {I} g ( t) d t $ converges. Normal convergence of (2) implies its absolute and uniform convergence; the converse is not true.
References
[1] | N. Bourbaki, "Elements of mathematics. General topology" , Addison-Wesley (1966) (Translated from French) |
[2] | N. Bourbaki, "Elements of mathematics. Functions of a real variable" , Addison-Wesley (1976) (Translated from French) |
[3] | L. Schwartz, "Cours d'analyse" , 1 , Hermann (1967) |
Normal convergence. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normal_convergence&oldid=48009