Namespaces
Variants
Actions

Difference between revisions of "Non-linear boundary value problem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
The determination in a certain domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067070/n0670701.png" /> of variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067070/n0670702.png" /> of a solution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067070/n0670703.png" /> of a differential equation
+
<!--
 +
n0670701.png
 +
$#A+1 = 8 n = 0
 +
$#C+1 = 8 : ~/encyclopedia/old_files/data/N067/N.0607070 Non\AAhlinear boundary value problem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067070/n0670704.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
from its values on (a part of) the boundary <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067070/n0670705.png" /> of this domain:
+
The determination in a certain domain  $  D $
 +
of variables  $  x = ( x _ {1} \dots x _ {n} ) $
 +
of a solution  $  u( x) $
 +
of a differential equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067070/n0670706.png" /></td> </tr></table>
+
$$
 +
( Lu ) ( x)  = f ( x) ,\  x \in D ,
 +
$$
  
where at least one of the operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067070/n0670707.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067070/n0670708.png" /> is non-linear.
+
from its values on (a part of) the boundary  $  S $
 +
of this domain:
 +
 
 +
$$
 +
( Bu ) ( y)  =  \phi ( y) ,\  y \in S ,
 +
$$
 +
 
 +
where at least one of the operators $  L $
 +
or $  B $
 +
is non-linear.
  
 
See also [[Boundary value problem, ordinary differential equations|Boundary value problem, ordinary differential equations]]; [[Boundary value problem, partial differential equations|Boundary value problem, partial differential equations]].
 
See also [[Boundary value problem, ordinary differential equations|Boundary value problem, ordinary differential equations]]; [[Boundary value problem, partial differential equations|Boundary value problem, partial differential equations]].

Latest revision as of 08:03, 6 June 2020


The determination in a certain domain $ D $ of variables $ x = ( x _ {1} \dots x _ {n} ) $ of a solution $ u( x) $ of a differential equation

$$ ( Lu ) ( x) = f ( x) ,\ x \in D , $$

from its values on (a part of) the boundary $ S $ of this domain:

$$ ( Bu ) ( y) = \phi ( y) ,\ y \in S , $$

where at least one of the operators $ L $ or $ B $ is non-linear.

See also Boundary value problem, ordinary differential equations; Boundary value problem, partial differential equations.

How to Cite This Entry:
Non-linear boundary value problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Non-linear_boundary_value_problem&oldid=47989
This article was adapted from an original article by A.P. Soldatov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article