Difference between revisions of "Newton-Cotes quadrature formula"
Ulf Rehmann (talk | contribs) m (moved Newton–Cotes quadrature formula to Newton-Cotes quadrature formula: ascii title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | n0665101.png | ||
+ | $#A+1 = 35 n = 0 | ||
+ | $#C+1 = 35 : ~/encyclopedia/old_files/data/N066/N.0606510 Newton\ANDCotes quadrature formula | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The interpolation [[Quadrature formula|quadrature formula]] | The interpolation [[Quadrature formula|quadrature formula]] | ||
− | + | $$ | |
+ | \int\limits _ { a } ^ { b } f ( x) dx \cong \ | ||
+ | ( b - a) | ||
+ | \sum _ {k = 0 } ^ { n } | ||
+ | B _ {k} ^ {(} n) | ||
+ | f ( x _ {k} ^ {(} n) ) | ||
+ | $$ | ||
+ | |||
+ | for the computation of an integral over a finite interval $ [ a, b] $, | ||
+ | with nodes $ x _ {k} ^ {(} n) = a + kh $, | ||
+ | $ k = 0 \dots n $, | ||
+ | where $ n $ | ||
+ | is a natural number, $ h = ( b - a)/n $, | ||
+ | and the number of nodes is $ N = n + 1 $. | ||
+ | The coefficients are determined by the fact that the quadrature formula is interpolational, that is, | ||
− | + | $$ | |
+ | B _ {k} ^ {(} n) = \ | ||
− | + | \frac{(- 1) ^ {n - k } }{k! ( n - k)! n } | |
− | + | \int\limits _ { 0 } ^ { n } | |
− | + | \frac{t ( t - 1) \dots ( t - n) }{t - k } | |
+ | dt. | ||
+ | $$ | ||
− | + | For $ n = 1 \dots 7 , 9 $ | |
+ | all coefficients are positive, for $ n = 8 $ | ||
+ | and $ n \geq 10 $ | ||
+ | there are both positive and negative ones among them. The algebraic degree of accuracy (the number $ d $ | ||
+ | such that the formula is exact for all polynomials of degree at most $ d $ | ||
+ | and not exact for $ x ^ {d + 1 } $) | ||
+ | is $ n $ | ||
+ | for odd $ n $ | ||
+ | and $ n + 1 $ | ||
+ | for even $ n $. | ||
+ | The simplest special cases of the Newton–Cotes quadrature formula are: $ n = 1 $, | ||
+ | $ h = b - a $, | ||
+ | $ N = 2 $, | ||
− | + | $$ | |
+ | \int\limits _ { a } ^ { b } f ( x) dx \cong \ | ||
+ | { | ||
+ | \frac{b - a }{2} | ||
+ | } [ f ( a) + f ( b)], | ||
+ | $$ | ||
− | the [[ | + | the [[Trapezium formula|trapezium formula]]; $ n = 2 $, |
+ | $ h = ( b - a)/2 $, | ||
+ | $ N = 3 $, | ||
− | + | $$ | |
+ | \int\limits _ { a } ^ { b } | ||
+ | f ( x) dx \cong \ | ||
+ | { | ||
+ | \frac{b - a }{6} | ||
+ | } | ||
+ | \left [ f ( a) + 4f \left ( { | ||
+ | \frac{a + b }{2} | ||
+ | } \right ) + f ( b) | ||
+ | \right ] , | ||
+ | $$ | ||
− | the | + | the [[Simpson formula|Simpson formula]]; $ n = 3 $, |
+ | $ h = ( b - a)/3 $, | ||
+ | $ N = 4 $, | ||
− | + | $$ | |
+ | \int\limits _ { a } ^ { b } | ||
+ | f ( x) dx \cong \ | ||
+ | { | ||
+ | \frac{b - a }{8} | ||
+ | } | ||
+ | \left [ f ( a) + 3f ( a + h) + 3f ( a + 2h) + f ( b) \right ] , | ||
+ | $$ | ||
− | The formula first appeared in a letter from I. Newton to G. Leibniz in 1676 (see [[#References|[1]]]) and later in the book [[#References|[2]]] by R. Cotes, where the coefficients of the formula are given for | + | the "three-eighths" quadrature formula. For large $ n $ |
+ | the Newton–Cotes formula is seldom used (because of the property of the coefficients for $ n \geq 10 $ | ||
+ | mentioned above). One prefers to use for small $ n $ | ||
+ | the compound Newton–Cotes quadrature formulas, namely, the trapezium formula and Simpson's formula. | ||
+ | |||
+ | The coefficients of the Newton–Cotes quadrature formula for $ n $ | ||
+ | from 1 to 20 are listed in [[#References|[3]]]. | ||
+ | |||
+ | The formula first appeared in a letter from I. Newton to G. Leibniz in 1676 (see [[#References|[1]]]) and later in the book [[#References|[2]]] by R. Cotes, where the coefficients of the formula are given for $ n $ | ||
+ | from 1 to 10. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I. Newton, "Mathematical principles of natural philosophy" A.N. Krylov (ed.) , ''Collected works'' , '''7''' , Moscow-Leningrad (1936) (In Russian; translated from Latin)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Cotes, "Harmonia Mensurarum" , '''1–2''' , London (1722) (Published by R. Smith after Cotes' death)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.I. Krylov, L.T. Shul'gina, "Handbook on numerical integration" , Moscow (1966) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I. Newton, "Mathematical principles of natural philosophy" A.N. Krylov (ed.) , ''Collected works'' , '''7''' , Moscow-Leningrad (1936) (In Russian; translated from Latin)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Cotes, "Harmonia Mensurarum" , '''1–2''' , London (1722) (Published by R. Smith after Cotes' death)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.I. Krylov, L.T. Shul'gina, "Handbook on numerical integration" , Moscow (1966) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 08:02, 6 June 2020
The interpolation quadrature formula
$$ \int\limits _ { a } ^ { b } f ( x) dx \cong \ ( b - a) \sum _ {k = 0 } ^ { n } B _ {k} ^ {(} n) f ( x _ {k} ^ {(} n) ) $$
for the computation of an integral over a finite interval $ [ a, b] $, with nodes $ x _ {k} ^ {(} n) = a + kh $, $ k = 0 \dots n $, where $ n $ is a natural number, $ h = ( b - a)/n $, and the number of nodes is $ N = n + 1 $. The coefficients are determined by the fact that the quadrature formula is interpolational, that is,
$$ B _ {k} ^ {(} n) = \ \frac{(- 1) ^ {n - k } }{k! ( n - k)! n } \int\limits _ { 0 } ^ { n } \frac{t ( t - 1) \dots ( t - n) }{t - k } dt. $$
For $ n = 1 \dots 7 , 9 $ all coefficients are positive, for $ n = 8 $ and $ n \geq 10 $ there are both positive and negative ones among them. The algebraic degree of accuracy (the number $ d $ such that the formula is exact for all polynomials of degree at most $ d $ and not exact for $ x ^ {d + 1 } $) is $ n $ for odd $ n $ and $ n + 1 $ for even $ n $. The simplest special cases of the Newton–Cotes quadrature formula are: $ n = 1 $, $ h = b - a $, $ N = 2 $,
$$ \int\limits _ { a } ^ { b } f ( x) dx \cong \ { \frac{b - a }{2} } [ f ( a) + f ( b)], $$
the trapezium formula; $ n = 2 $, $ h = ( b - a)/2 $, $ N = 3 $,
$$ \int\limits _ { a } ^ { b } f ( x) dx \cong \ { \frac{b - a }{6} } \left [ f ( a) + 4f \left ( { \frac{a + b }{2} } \right ) + f ( b) \right ] , $$
the Simpson formula; $ n = 3 $, $ h = ( b - a)/3 $, $ N = 4 $,
$$ \int\limits _ { a } ^ { b } f ( x) dx \cong \ { \frac{b - a }{8} } \left [ f ( a) + 3f ( a + h) + 3f ( a + 2h) + f ( b) \right ] , $$
the "three-eighths" quadrature formula. For large $ n $ the Newton–Cotes formula is seldom used (because of the property of the coefficients for $ n \geq 10 $ mentioned above). One prefers to use for small $ n $ the compound Newton–Cotes quadrature formulas, namely, the trapezium formula and Simpson's formula.
The coefficients of the Newton–Cotes quadrature formula for $ n $ from 1 to 20 are listed in [3].
The formula first appeared in a letter from I. Newton to G. Leibniz in 1676 (see [1]) and later in the book [2] by R. Cotes, where the coefficients of the formula are given for $ n $ from 1 to 10.
References
[1] | I. Newton, "Mathematical principles of natural philosophy" A.N. Krylov (ed.) , Collected works , 7 , Moscow-Leningrad (1936) (In Russian; translated from Latin) |
[2] | R. Cotes, "Harmonia Mensurarum" , 1–2 , London (1722) (Published by R. Smith after Cotes' death) |
[3] | V.I. Krylov, L.T. Shul'gina, "Handbook on numerical integration" , Moscow (1966) (In Russian) |
Comments
The formulas above are often referred to as closed Newton–Cotes formulas, in contrast to open Newton–Cotes formulas, which do not include the end points as nodes.
References
[a1] | H. Engels, "Numerical quadrature and cubature" , Acad. Press (1980) |
[a2] | H. Brass, "Quadraturverfahren" , Vandenhoeck & Ruprecht (1977) |
[a3] | P.J. Davis, P. Rabinowitz, "Methods of numerical integration" , Acad. Press (1984) |
[a4] | A.H. Stroud, "Numerical quadrature and solution of ordinary differential equations" , Springer (1974) |
Newton-Cotes quadrature formula. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Newton-Cotes_quadrature_formula&oldid=47964