Difference between revisions of "Negative polynomial distribution"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | n0662301.png | ||
| + | $#A+1 = 35 n = 0 | ||
| + | $#C+1 = 35 : ~/encyclopedia/old_files/data/N066/N.0606230 Negative polynomial distribution, | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''negative multinomial distribution'' | ''negative multinomial distribution'' | ||
| − | The joint [[Probability distribution|probability distribution]] (cf. also [[Joint distribution|Joint distribution]]) of random variables | + | The joint [[Probability distribution|probability distribution]] (cf. also [[Joint distribution|Joint distribution]]) of random variables $ X _ {1} \dots X _ {k} $ |
| − | + | that take non-negative integer values $ m = 0, 1 \dots $ | |
| − | + | defined by the formula | |
| − | + | $$ \tag{* } | |
| + | {\mathsf P} \{ X _ {1} = m _ {1} \dots X _ {k} = m _ {k} \} = | ||
| + | $$ | ||
| − | + | $$ | |
| + | = \ | ||
| − | + | \frac{\Gamma ( r+ m _ {1} + \dots + m _ {k} ) }{\Gamma ( r) m _ {1} ! \dots m _ {k} ! } | |
| + | p _ {0} ^ {r} p _ {1} ^ {m _ {1} } \dots p _ {k} ^ {m _ {k} } , | ||
| + | $$ | ||
| − | + | where $ r > 0 $ | |
| + | and $ p _ {0} \dots p _ {k} $( | ||
| + | $ 0 < p _ {i} < 1 $, | ||
| + | $ i = 0 \dots k $; | ||
| + | $ p _ {0} + \dots + p _ {k} = 1 $) | ||
| + | are parameters. A negative multinomial distribution is a multi-dimensional [[Discrete distribution|discrete distribution]] — a distribution of a random vector $ ( X _ {1} \dots X _ {k} ) $ | ||
| + | with non-negative integer components. | ||
| − | + | The [[Generating function|generating function]] of the negative polynomial distribution with parameters $ r, p _ {0} \dots p _ {k} $ | |
| + | has the form | ||
| − | + | $$ | |
| + | P( z _ {1} \dots z _ {k} ) = p _ {0} ^ {r} \left ( 1 - \sum | ||
| + | _ { i= } 1 ^ { k } z _ {i} p _ {i} \right ) ^ {-} r . | ||
| + | $$ | ||
| + | A negative multinomial distribution arises in the following multinomial scheme. Successive independent trials are carried out, and in each trial $ k+ 1 $ | ||
| + | different outcomes with labels $ 0 \dots k $ | ||
| + | are possible, having probabilities $ p _ {0} \dots p _ {k} $, | ||
| + | respectively. The trials continue up to the $ r $- | ||
| + | th appearance of the outcome with label 0 (here $ r $ | ||
| + | is an integer). If $ X _ {i} $ | ||
| + | is the number of appearances of the outcome with label $ i $, | ||
| + | $ i = 1 \dots k $, | ||
| + | during the trials, then formula (*) expresses the probability of the appearance of outcomes with labels $ 1 \dots k $, | ||
| + | equal, respectively, $ m _ {1} \dots m _ {k} $ | ||
| + | times, up to the $ r $- | ||
| + | th appearance of the outcome 0. A negative multinomial distribution in this sense is a generalization of a [[Negative binomial distribution|negative binomial distribution]], coinciding with it when $ k= 1 $. | ||
| + | If a random vector $ ( X _ {0} \dots X _ {k} ) $ | ||
| + | has, conditionally on $ n $, | ||
| + | a [[Multinomial distribution|multinomial distribution]] with parameters $ n > 1 $, | ||
| + | $ p _ {0} \dots p _ {k} $ | ||
| + | and if the parameter $ n $ | ||
| + | is itself a random variable having a negative binomial distribution with parameters $ r > 0 $, | ||
| + | $ 0 < \pi < 1 $, | ||
| + | then the marginal distribution of the vector $ ( X _ {1} \dots X _ {k} ) $, | ||
| + | given the condition $ X _ {0} = r $, | ||
| + | is the negative multinomial distribution with parameters $ r $, | ||
| + | $ p _ {0} ( 1- \pi ) \dots p _ {k} ( 1- \pi ) $. | ||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Neyman, "Proceedings of the international symposium on discrete distributions" , Montreal (1963)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Neyman, "Proceedings of the international symposium on discrete distributions" , Montreal (1963)</TD></TR></table> | ||
Revision as of 08:02, 6 June 2020
negative multinomial distribution
The joint probability distribution (cf. also Joint distribution) of random variables $ X _ {1} \dots X _ {k} $ that take non-negative integer values $ m = 0, 1 \dots $ defined by the formula
$$ \tag{* } {\mathsf P} \{ X _ {1} = m _ {1} \dots X _ {k} = m _ {k} \} = $$
$$ = \ \frac{\Gamma ( r+ m _ {1} + \dots + m _ {k} ) }{\Gamma ( r) m _ {1} ! \dots m _ {k} ! } p _ {0} ^ {r} p _ {1} ^ {m _ {1} } \dots p _ {k} ^ {m _ {k} } , $$
where $ r > 0 $ and $ p _ {0} \dots p _ {k} $( $ 0 < p _ {i} < 1 $, $ i = 0 \dots k $; $ p _ {0} + \dots + p _ {k} = 1 $) are parameters. A negative multinomial distribution is a multi-dimensional discrete distribution — a distribution of a random vector $ ( X _ {1} \dots X _ {k} ) $ with non-negative integer components.
The generating function of the negative polynomial distribution with parameters $ r, p _ {0} \dots p _ {k} $ has the form
$$ P( z _ {1} \dots z _ {k} ) = p _ {0} ^ {r} \left ( 1 - \sum _ { i= } 1 ^ { k } z _ {i} p _ {i} \right ) ^ {-} r . $$
A negative multinomial distribution arises in the following multinomial scheme. Successive independent trials are carried out, and in each trial $ k+ 1 $ different outcomes with labels $ 0 \dots k $ are possible, having probabilities $ p _ {0} \dots p _ {k} $, respectively. The trials continue up to the $ r $- th appearance of the outcome with label 0 (here $ r $ is an integer). If $ X _ {i} $ is the number of appearances of the outcome with label $ i $, $ i = 1 \dots k $, during the trials, then formula (*) expresses the probability of the appearance of outcomes with labels $ 1 \dots k $, equal, respectively, $ m _ {1} \dots m _ {k} $ times, up to the $ r $- th appearance of the outcome 0. A negative multinomial distribution in this sense is a generalization of a negative binomial distribution, coinciding with it when $ k= 1 $.
If a random vector $ ( X _ {0} \dots X _ {k} ) $ has, conditionally on $ n $, a multinomial distribution with parameters $ n > 1 $, $ p _ {0} \dots p _ {k} $ and if the parameter $ n $ is itself a random variable having a negative binomial distribution with parameters $ r > 0 $, $ 0 < \pi < 1 $, then the marginal distribution of the vector $ ( X _ {1} \dots X _ {k} ) $, given the condition $ X _ {0} = r $, is the negative multinomial distribution with parameters $ r $, $ p _ {0} ( 1- \pi ) \dots p _ {k} ( 1- \pi ) $.
Comments
References
| [a1] | J. Neyman, "Proceedings of the international symposium on discrete distributions" , Montreal (1963) |
Negative polynomial distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Negative_polynomial_distribution&oldid=47953