Difference between revisions of "Müntz theorem"
Ulf Rehmann (talk | contribs) m (moved Muentz theorem to Müntz theorem over redirect: accented title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | m0655802.png | ||
+ | $#A+1 = 42 n = 0 | ||
+ | $#C+1 = 42 : ~/encyclopedia/old_files/data/M065/M.0605580 M\AGuntz theorem, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | < | + | ''theorem on the completeness of a system of powers $ \{ x ^ {\lambda _ {k} } \} $ |
+ | on an interval $ [ a , b ] $, | ||
+ | $ 0 < a < b < \infty $'' | ||
+ | |||
+ | Let $ 0 < \lambda _ {1} < \lambda _ {2} < \dots $. | ||
+ | In order that for any continuous function $ f $ | ||
+ | on $ [ a , b ] $ | ||
+ | and for any $ \epsilon > 0 $ | ||
+ | there is a linear combination | ||
+ | |||
+ | $$ | ||
+ | P ( x) = \sum _ { k= } 1 ^ { n } | ||
+ | a _ {k} x ^ {\lambda _ {k} } | ||
+ | $$ | ||
such that | such that | ||
− | + | $$ | |
+ | \| f - P \| _ {C} = \ | ||
+ | \max _ {a \leq x \leq b } \ | ||
+ | | f ( x) - P ( x) | < \epsilon , | ||
+ | $$ | ||
it is necessary and sufficient that | it is necessary and sufficient that | ||
− | + | $$ \tag{* } | |
+ | \sum _ { k= } 1 ^ \infty | ||
+ | |||
+ | \frac{1}{\lambda _ {k} } | ||
+ | = \infty . | ||
+ | $$ | ||
− | In the case of an interval | + | In the case of an interval $ [ 0 , b ] $ |
+ | one adds the function which is identically equal to 1 to the system $ \{ x ^ {\lambda _ {k} } \} $ | ||
+ | and condition (*) is, as before, necessary and sufficient for the completeness of the enlarged system. The condition $ a \geq 0 $ | ||
+ | is essential: the system $ \{ x ^ {2k} \} _ {k=} 0 ^ \infty $( | ||
+ | which satisfies (*)) is not complete on $ [ - 1 , 1 ] $( | ||
+ | an odd function cannot be arbitrarily closely approximated by combinations of even powers). | ||
− | Condition (*) is necessary and sufficient for the completeness of < | + | Condition (*) is necessary and sufficient for the completeness of $ \{ x ^ {\lambda _ {k} } \} $, |
+ | $ - 1 / p < \lambda _ {1} < \lambda _ {2} < {} \dots $, | ||
+ | on $ [ a , b ] $, | ||
+ | $ a \geq 0 $, | ||
+ | in the metric of $ L _ {p} $, | ||
+ | $ p > 1 $; | ||
+ | that is, for each $ f \in L _ {p} ( a , b ) $ | ||
+ | and any $ \epsilon > 0 $ | ||
+ | there is a linear combination $ P $ | ||
+ | such that | ||
− | + | $$ | |
+ | \| f - P \| _ {L _ {p} } = \ | ||
+ | \left | \int\limits _ { a } ^ { b } | ||
+ | | f ( x) - P ( x) | ^ {p} \ | ||
+ | d x \right | ^ {1/p} < \epsilon . | ||
+ | $$ | ||
The theorem was proved by H. Müntz [[#References|[1]]]. | The theorem was proved by H. Müntz [[#References|[1]]]. | ||
Line 23: | Line 72: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Müntz, "Ueber den Approximationssatz von Weierstrass" , ''Festschrift H.A. Schwarz'' , ''Schwarz–Festschrift'' , Berlin (1914)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Müntz, "Ueber den Approximationssatz von Weierstrass" , ''Festschrift H.A. Schwarz'' , ''Schwarz–Festschrift'' , Berlin (1914)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | There exists several extensions of the Müntz theorem. First, O. Szász showed that with exponents | + | There exists several extensions of the Müntz theorem. First, O. Szász showed that with exponents $ \lambda _ {k} \in \mathbf C $, |
+ | $ \mathop{\rm Re} \lambda _ {k} > 0 $, | ||
− | + | $$ \tag{a1 } | |
+ | \sum \mathop{\rm Re} | ||
+ | \frac{1}{\lambda _ {k} } | ||
+ | = \infty | ||
+ | $$ | ||
− | is necessary and sufficient for completeness of the system | + | is necessary and sufficient for completeness of the system $ \{ x ^ {\lambda _ {k} } \} $ |
+ | in $ C [ a , b ] $ | ||
+ | or $ L _ {p} [ a , b ] $, | ||
+ | $ p > 1 $, | ||
+ | or, equivalently, completeness of $ \{ e ^ {\lambda _ {k} z } \} $ | ||
+ | in, say, $ C _ {0} ( - \infty , 0 ] $. | ||
+ | Later, J. Korevaar, A.F. Leont'ev, P. Malliavin, J.A. Siddigi, and others studied analogous completeness problems on curves $ \gamma ( x) = x + i \eta ( x) $, | ||
+ | $ - \infty < x \leq 0 $. | ||
+ | Very recently it was shown that if $ \eta $ | ||
+ | is piecewise $ C ^ {1} $, | ||
+ | with $ \mathop{\rm exp} | \eta ^ \prime | < \infty $, | ||
+ | and $ \{ \lambda _ {k} \} $ | ||
+ | satisfies (a1) and is contained in a sufficiently small sector around the positive axis, then $ \{ e ^ {\lambda _ {k} z } \} $ | ||
+ | spans $ C _ {0} [ \gamma ] $. | ||
+ | See [[#References|[a1]]], also for further references. Finally, attempts have been made to generalize the Müntz theorem to functions of several variables, see [[#References|[a2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Korevaar, R. Zeinstra, "Transformées de Laplace pour les courbes à pente bornée et un résultat correspondant du type Müntz–Szász" ''C.R. Acad. Sci. Paris'' , '''301''' (1985) pp. 695–698</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L.I. Ronkin, "Some questions of completeness and uniqueness for functions of several variables" ''Funct. Anal. Appl.'' , '''7''' (1973) pp. 37–45 ''Funkts. Anal. Prilozhen.'' , '''7''' (1973) pp. 45–55</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Korevaar, R. Zeinstra, "Transformées de Laplace pour les courbes à pente bornée et un résultat correspondant du type Müntz–Szász" ''C.R. Acad. Sci. Paris'' , '''301''' (1985) pp. 695–698</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> L.I. Ronkin, "Some questions of completeness and uniqueness for functions of several variables" ''Funct. Anal. Appl.'' , '''7''' (1973) pp. 37–45 ''Funkts. Anal. Prilozhen.'' , '''7''' (1973) pp. 45–55</TD></TR></table> |
Revision as of 08:02, 6 June 2020
theorem on the completeness of a system of powers $ \{ x ^ {\lambda _ {k} } \} $
on an interval $ [ a , b ] $,
$ 0 < a < b < \infty $
Let $ 0 < \lambda _ {1} < \lambda _ {2} < \dots $. In order that for any continuous function $ f $ on $ [ a , b ] $ and for any $ \epsilon > 0 $ there is a linear combination
$$ P ( x) = \sum _ { k= } 1 ^ { n } a _ {k} x ^ {\lambda _ {k} } $$
such that
$$ \| f - P \| _ {C} = \ \max _ {a \leq x \leq b } \ | f ( x) - P ( x) | < \epsilon , $$
it is necessary and sufficient that
$$ \tag{* } \sum _ { k= } 1 ^ \infty \frac{1}{\lambda _ {k} } = \infty . $$
In the case of an interval $ [ 0 , b ] $ one adds the function which is identically equal to 1 to the system $ \{ x ^ {\lambda _ {k} } \} $ and condition (*) is, as before, necessary and sufficient for the completeness of the enlarged system. The condition $ a \geq 0 $ is essential: the system $ \{ x ^ {2k} \} _ {k=} 0 ^ \infty $( which satisfies (*)) is not complete on $ [ - 1 , 1 ] $( an odd function cannot be arbitrarily closely approximated by combinations of even powers).
Condition (*) is necessary and sufficient for the completeness of $ \{ x ^ {\lambda _ {k} } \} $, $ - 1 / p < \lambda _ {1} < \lambda _ {2} < {} \dots $, on $ [ a , b ] $, $ a \geq 0 $, in the metric of $ L _ {p} $, $ p > 1 $; that is, for each $ f \in L _ {p} ( a , b ) $ and any $ \epsilon > 0 $ there is a linear combination $ P $ such that
$$ \| f - P \| _ {L _ {p} } = \ \left | \int\limits _ { a } ^ { b } | f ( x) - P ( x) | ^ {p} \ d x \right | ^ {1/p} < \epsilon . $$
The theorem was proved by H. Müntz [1].
References
[1] | H. Müntz, "Ueber den Approximationssatz von Weierstrass" , Festschrift H.A. Schwarz , Schwarz–Festschrift , Berlin (1914) |
[2] | N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian) |
Comments
There exists several extensions of the Müntz theorem. First, O. Szász showed that with exponents $ \lambda _ {k} \in \mathbf C $, $ \mathop{\rm Re} \lambda _ {k} > 0 $,
$$ \tag{a1 } \sum \mathop{\rm Re} \frac{1}{\lambda _ {k} } = \infty $$
is necessary and sufficient for completeness of the system $ \{ x ^ {\lambda _ {k} } \} $ in $ C [ a , b ] $ or $ L _ {p} [ a , b ] $, $ p > 1 $, or, equivalently, completeness of $ \{ e ^ {\lambda _ {k} z } \} $ in, say, $ C _ {0} ( - \infty , 0 ] $. Later, J. Korevaar, A.F. Leont'ev, P. Malliavin, J.A. Siddigi, and others studied analogous completeness problems on curves $ \gamma ( x) = x + i \eta ( x) $, $ - \infty < x \leq 0 $. Very recently it was shown that if $ \eta $ is piecewise $ C ^ {1} $, with $ \mathop{\rm exp} | \eta ^ \prime | < \infty $, and $ \{ \lambda _ {k} \} $ satisfies (a1) and is contained in a sufficiently small sector around the positive axis, then $ \{ e ^ {\lambda _ {k} z } \} $ spans $ C _ {0} [ \gamma ] $. See [a1], also for further references. Finally, attempts have been made to generalize the Müntz theorem to functions of several variables, see [a2].
References
[a1] | J. Korevaar, R. Zeinstra, "Transformées de Laplace pour les courbes à pente bornée et un résultat correspondant du type Müntz–Szász" C.R. Acad. Sci. Paris , 301 (1985) pp. 695–698 |
[a2] | L.I. Ronkin, "Some questions of completeness and uniqueness for functions of several variables" Funct. Anal. Appl. , 7 (1973) pp. 37–45 Funkts. Anal. Prilozhen. , 7 (1973) pp. 45–55 |
Müntz theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=M%C3%BCntz_theorem&oldid=47945