Difference between revisions of "Multiple-correlation coefficient"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | m0653601.png | ||
+ | $#A+1 = 60 n = 0 | ||
+ | $#C+1 = 60 : ~/encyclopedia/old_files/data/M065/M.0605360 Multiple\AAhcorrelation coefficient | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A measure of the linear dependence between one random variable and a certain collection of random variables. More precisely, if $ ( X _ {1} \dots X _ {k} ) $ | |
+ | is a random vector with values in $ \mathbf R ^ {k} $, | ||
+ | then the multiple-correlation coefficient between $ X _ {1} $ | ||
+ | and $ X _ {2} \dots X _ {k} $ | ||
+ | is defined as the usual [[Correlation coefficient|correlation coefficient]] between $ X _ {1} $ | ||
+ | and its best linear approximation $ {\mathsf E} ( X _ {1} \mid X _ {2} \dots X _ {k} ) $ | ||
+ | relative to $ X _ {2} \dots X _ {k} $, | ||
+ | i.e. as its [[Regression|regression]] relative to $ X _ {2} \dots X _ {k} $. | ||
+ | The multiple-correlation coefficient has the property that if $ {\mathsf E} X _ {1} = \dots = {\mathsf E} X _ {k} = 0 $ | ||
+ | and if | ||
− | + | $$ | |
+ | X _ {1} ^ {*} = \ | ||
+ | \beta _ {2} X _ {2} + \dots + \beta _ {k} X _ {k} $$ | ||
− | + | is the regression of $ X _ {1} $ | |
+ | relative to $ X _ {2} \dots X _ {k} $, | ||
+ | then among all linear combinations of $ X _ {2} \dots X _ {k} $ | ||
+ | the variable $ X _ {1} ^ {*} $ | ||
+ | has largest correlation with $ X _ {1} $. | ||
+ | In this sense the multiple-correlation coefficient is a special case of the canonical correlation coefficient (cf. [[Canonical correlation coefficients|Canonical correlation coefficients]]). For $ k = 2 $ | ||
+ | the multiple-correlation coefficient is the absolute value of the usual correlation coefficient $ \rho _ {12} $ | ||
+ | between $ X _ {1} $ | ||
+ | and $ X _ {2} $. | ||
+ | The multiple-correlation coefficient between $ X _ {1} $ | ||
+ | and $ X _ {2} \dots X _ {k} $ | ||
+ | is denoted by $ \rho _ {1 \cdot ( 2 \dots k ) } $ | ||
+ | and is expressed in terms of the entries of the correlation matrix $ R = \| \rho _ {ij} \| $, | ||
+ | $ i , j = 1 \dots k $, | ||
+ | by | ||
− | + | $$ | |
+ | \rho _ {1 \cdot ( 2 \dots k ) } ^ {2} = 1 - | ||
− | + | \frac{| R | }{R _ {11} } | |
+ | , | ||
+ | $$ | ||
− | + | where $ | R | $ | |
+ | is the determinant of $ R $ | ||
+ | and $ R _ {11} $ | ||
+ | is the [[Cofactor|cofactor]] of $ \rho _ {11} = 1 $; | ||
+ | here $ 0 \leq \rho _ {1 \cdot ( 2 \dots k) } \leq 1 $. | ||
+ | If $ \rho _ {1 \cdot ( 2 \dots k ) } = 1 $, | ||
+ | then, with probability $ 1 $, | ||
+ | $ X _ {1} $ | ||
+ | is equal to a linear combination of $ X _ {2} \dots X _ {k} $, | ||
+ | that is, the [[Joint distribution|joint distribution]] of $ X _ {1} \dots X _ {k} $ | ||
+ | is concentrated on a hyperplane in $ \mathbf R ^ {k} $. | ||
+ | On the other hand, $ \rho _ {1 \cdot ( 2 \dots k ) } = 0 $ | ||
+ | if and only if $ \rho _ {12} = \dots = \rho _ {1k} = 0 $, | ||
+ | that is, if $ X _ {1} $ | ||
+ | is not correlated with any of $ X _ {2} \dots X _ {k} $. | ||
+ | To calculate the multiple-correlation coefficient one can use the formula | ||
− | + | $$ | |
+ | \rho _ {1 \cdot ( 2 \dots k ) } | ||
+ | ^ {2} = 1 - | ||
− | + | \frac{\sigma _ {1 \cdot ( 2 \dots k ) } ^ {2} }{\sigma _ {1} ^ {2} } | |
+ | , | ||
+ | $$ | ||
− | + | where $ \sigma _ {1} ^ {2} $ | |
+ | is the variance of $ X _ {1} $ | ||
+ | and | ||
− | + | $$ | |
+ | \sigma _ {1 \cdot ( 2 \dots k ) } | ||
+ | ^ {2} = {\mathsf E} [ X _ {1} - ( \beta _ {2} X _ {2} + \dots + | ||
+ | \beta _ {k} X _ {k} ) ] ^ {2} | ||
+ | $$ | ||
+ | |||
+ | is the variance of $ X _ {1} $ | ||
+ | with respect to the regression. | ||
+ | |||
+ | The sample analogue of the multiple-correlation coefficient $ \rho _ {1 \cdot ( 2 \dots k ) } $ | ||
+ | is | ||
+ | |||
+ | $$ | ||
+ | r _ {1 \cdot ( 2 \dots k ) } = \ | ||
+ | \sqrt {1 - | ||
+ | |||
+ | \frac{s _ {1 \cdot ( 2 \dots k ) } ^ {2} }{s _ {1} ^ {2} } | ||
+ | } , | ||
+ | $$ | ||
+ | |||
+ | where $ s _ {1 \cdot ( 2 \dots k ) } ^ {2} $ | ||
+ | and $ s _ {1} ^ {2} $ | ||
+ | are estimators of $ \sigma _ {1 \cdot ( 2 \dots k ) } ^ {2} $ | ||
+ | and $ \sigma _ {1} ^ {2} $ | ||
+ | based on a sample of size $ n $. | ||
+ | To test the hypothesis of no relationship, the sampling distribution of $ r _ {1 \cdot ( 2 \dots k) } $ | ||
+ | is used. Given that the sample is taken from a multivariate normal distribution, the variable $ r _ {1 \cdot ( 2 \dots k ) } ^ {2} $ | ||
+ | has the beta-distribution with parameters $ ( ( k - 1 ) / 2 , ( n - k ) / 2 ) $ | ||
+ | if $ \rho _ {1 \cdot ( 2 \dots k ) } = 0 $; | ||
+ | if $ \rho _ {1 \cdot ( 2 \dots k ) } \neq 0 $, | ||
+ | then the distribution of $ r _ {1 \cdot ( 2 \dots k ) } ^ {2} $ | ||
+ | is known, but is somewhat complicated. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.G. Kendall, A. Stuart, "The advanced theory of statistics" , '''2. Inference and relationship''' , Griffin (1979)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.G. Kendall, A. Stuart, "The advanced theory of statistics" , '''2. Inference and relationship''' , Griffin (1979)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | For the distribution of | + | For the distribution of $ r _ {1 \cdot ( 2 \dots k ) } ^ {2} $ |
+ | if $ \rho _ {1 \cdot ( 2 \dots k ) } \neq 0 $ | ||
+ | see [[#References|[a2]]], Chapt. 10. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1958)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M.L. Eaton, "Multivariate statistics: A vector space approach" , Wiley (1983)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R.J. Muirhead, "Aspects of multivariate statistical theory" , Wiley (1982)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1958)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M.L. Eaton, "Multivariate statistics: A vector space approach" , Wiley (1983)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> R.J. Muirhead, "Aspects of multivariate statistical theory" , Wiley (1982)</TD></TR></table> |
Latest revision as of 08:02, 6 June 2020
A measure of the linear dependence between one random variable and a certain collection of random variables. More precisely, if $ ( X _ {1} \dots X _ {k} ) $
is a random vector with values in $ \mathbf R ^ {k} $,
then the multiple-correlation coefficient between $ X _ {1} $
and $ X _ {2} \dots X _ {k} $
is defined as the usual correlation coefficient between $ X _ {1} $
and its best linear approximation $ {\mathsf E} ( X _ {1} \mid X _ {2} \dots X _ {k} ) $
relative to $ X _ {2} \dots X _ {k} $,
i.e. as its regression relative to $ X _ {2} \dots X _ {k} $.
The multiple-correlation coefficient has the property that if $ {\mathsf E} X _ {1} = \dots = {\mathsf E} X _ {k} = 0 $
and if
$$ X _ {1} ^ {*} = \ \beta _ {2} X _ {2} + \dots + \beta _ {k} X _ {k} $$
is the regression of $ X _ {1} $ relative to $ X _ {2} \dots X _ {k} $, then among all linear combinations of $ X _ {2} \dots X _ {k} $ the variable $ X _ {1} ^ {*} $ has largest correlation with $ X _ {1} $. In this sense the multiple-correlation coefficient is a special case of the canonical correlation coefficient (cf. Canonical correlation coefficients). For $ k = 2 $ the multiple-correlation coefficient is the absolute value of the usual correlation coefficient $ \rho _ {12} $ between $ X _ {1} $ and $ X _ {2} $. The multiple-correlation coefficient between $ X _ {1} $ and $ X _ {2} \dots X _ {k} $ is denoted by $ \rho _ {1 \cdot ( 2 \dots k ) } $ and is expressed in terms of the entries of the correlation matrix $ R = \| \rho _ {ij} \| $, $ i , j = 1 \dots k $, by
$$ \rho _ {1 \cdot ( 2 \dots k ) } ^ {2} = 1 - \frac{| R | }{R _ {11} } , $$
where $ | R | $ is the determinant of $ R $ and $ R _ {11} $ is the cofactor of $ \rho _ {11} = 1 $; here $ 0 \leq \rho _ {1 \cdot ( 2 \dots k) } \leq 1 $. If $ \rho _ {1 \cdot ( 2 \dots k ) } = 1 $, then, with probability $ 1 $, $ X _ {1} $ is equal to a linear combination of $ X _ {2} \dots X _ {k} $, that is, the joint distribution of $ X _ {1} \dots X _ {k} $ is concentrated on a hyperplane in $ \mathbf R ^ {k} $. On the other hand, $ \rho _ {1 \cdot ( 2 \dots k ) } = 0 $ if and only if $ \rho _ {12} = \dots = \rho _ {1k} = 0 $, that is, if $ X _ {1} $ is not correlated with any of $ X _ {2} \dots X _ {k} $. To calculate the multiple-correlation coefficient one can use the formula
$$ \rho _ {1 \cdot ( 2 \dots k ) } ^ {2} = 1 - \frac{\sigma _ {1 \cdot ( 2 \dots k ) } ^ {2} }{\sigma _ {1} ^ {2} } , $$
where $ \sigma _ {1} ^ {2} $ is the variance of $ X _ {1} $ and
$$ \sigma _ {1 \cdot ( 2 \dots k ) } ^ {2} = {\mathsf E} [ X _ {1} - ( \beta _ {2} X _ {2} + \dots + \beta _ {k} X _ {k} ) ] ^ {2} $$
is the variance of $ X _ {1} $ with respect to the regression.
The sample analogue of the multiple-correlation coefficient $ \rho _ {1 \cdot ( 2 \dots k ) } $ is
$$ r _ {1 \cdot ( 2 \dots k ) } = \ \sqrt {1 - \frac{s _ {1 \cdot ( 2 \dots k ) } ^ {2} }{s _ {1} ^ {2} } } , $$
where $ s _ {1 \cdot ( 2 \dots k ) } ^ {2} $ and $ s _ {1} ^ {2} $ are estimators of $ \sigma _ {1 \cdot ( 2 \dots k ) } ^ {2} $ and $ \sigma _ {1} ^ {2} $ based on a sample of size $ n $. To test the hypothesis of no relationship, the sampling distribution of $ r _ {1 \cdot ( 2 \dots k) } $ is used. Given that the sample is taken from a multivariate normal distribution, the variable $ r _ {1 \cdot ( 2 \dots k ) } ^ {2} $ has the beta-distribution with parameters $ ( ( k - 1 ) / 2 , ( n - k ) / 2 ) $ if $ \rho _ {1 \cdot ( 2 \dots k ) } = 0 $; if $ \rho _ {1 \cdot ( 2 \dots k ) } \neq 0 $, then the distribution of $ r _ {1 \cdot ( 2 \dots k ) } ^ {2} $ is known, but is somewhat complicated.
References
[1] | H. Cramér, "Mathematical methods of statistics" , Princeton Univ. Press (1946) |
[2] | M.G. Kendall, A. Stuart, "The advanced theory of statistics" , 2. Inference and relationship , Griffin (1979) |
Comments
For the distribution of $ r _ {1 \cdot ( 2 \dots k ) } ^ {2} $ if $ \rho _ {1 \cdot ( 2 \dots k ) } \neq 0 $ see [a2], Chapt. 10.
References
[a1] | T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1958) |
[a2] | M.L. Eaton, "Multivariate statistics: A vector space approach" , Wiley (1983) |
[a3] | R.J. Muirhead, "Aspects of multivariate statistical theory" , Wiley (1982) |
Multiple-correlation coefficient. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multiple-correlation_coefficient&oldid=47929