Difference between revisions of "Multi-operator group"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | m0652002.png | ||
+ | $#A+1 = 55 n = 1 | ||
+ | $#C+1 = 55 : ~/encyclopedia/old_files/data/M065/M.0605200 Multi\AAhoperator group, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''group with multiple operators, $ \Omega $- | |
+ | group'' | ||
− | + | A [[Universal algebra|universal algebra]] which is a [[Group|group]] relative to the addition operation $ + $( | |
+ | which need not be commutative) and in which there is given a system of operations $ \Omega $ | ||
+ | of arity $ \geq 1 $. | ||
+ | It is assumed that the zero element $ 0 $ | ||
+ | of the additive group $ A $ | ||
+ | is a subalgebra, that is, $ 0 \dots 0 \omega = 0 $ | ||
+ | for all $ \omega \in \Omega $. | ||
+ | Thus, a multi-operator group combines the concepts of a group, a [[Linear-algebra(2)|linear algebra]] and a [[Ring|ring]]. An ideal of an $ \Omega $- | ||
+ | group is a [[Normal subgroup|normal subgroup]] $ N $ | ||
+ | of $ A $ | ||
+ | such that | ||
− | + | $$ | |
+ | - ( x _ {1} \dots x _ {n} \omega ) + | ||
+ | ( x _ {1} \dots x _ {i-} 1 ( a + x _ {i} ) x _ {i+} 1 \dots | ||
+ | x _ {n} \omega ) \in N | ||
+ | $$ | ||
− | + | for all $ a \in N $, | |
+ | $ x _ {i} \in A $, | ||
+ | $ \omega \in \Omega $, | ||
+ | $ 1 \leq i \leq n $. | ||
+ | Congruences on a multi-operator group are described by coset classes relative to ideals. | ||
− | + | Let $ A $, | |
+ | $ B $ | ||
+ | and $ C $ | ||
+ | be $ \Omega $- | ||
+ | subgroups in an $ \Omega $- | ||
+ | group $ G $( | ||
+ | that is, subalgebras of the universal algebra $ G $), | ||
+ | where $ C $ | ||
+ | is generated by $ A $ | ||
+ | and $ B $. | ||
+ | The mutual commutator $ [ A , B ] $ | ||
+ | of the subgroups $ A $ | ||
+ | and $ B $ | ||
+ | is the ideal in $ C $ | ||
+ | generated by all elements of the form | ||
− | where | + | $$ |
+ | - a - b + a + b , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | - ( a _ {1} \dots a _ {n} \omega ) - ( b _ {1} \dots | ||
+ | b _ {n} \omega ) + ( a _ {1} + b _ {1} ) \dots ( a _ {n} + b _ {n} ) \omega , | ||
+ | $$ | ||
+ | |||
+ | where $ a , a _ {i} \in A $, | ||
+ | $ b , b _ {i} \in B $, | ||
+ | $ \omega \in \Omega $. | ||
+ | Let $ G ^ { \prime } = [ G , G ] $. | ||
+ | A multi-operator group $ G $ | ||
+ | is called Abelian if $ G ^ { \prime } = 0 $. | ||
+ | Inductively one defines ideals $ G _ {i+} 1 = [ G _ {i} , G ] $, | ||
+ | where $ G _ {1} = G ^ { \prime } $, | ||
+ | and $ G ^ {(} i+ 1) = [ G ^ {(} i) , G ^ {(} i) ] $, | ||
+ | where $ G ^ {(} 1) = G ^ { \prime } $. | ||
+ | A multi-operator group $ G $ | ||
+ | is called nilpotent if $ G _ {i} = 0 $, | ||
+ | and solvable if $ G ^ {(} i) = 0 $ | ||
+ | for some $ i $. | ||
+ | Many of the properties of the corresponding classes of groups and rings can be transferred to these classes of multi-operator groups. A multi-operator group $ A $ | ||
+ | is called a multi-operator (linear) $ \Omega $- | ||
+ | algebra over a commutative associative ring $ k $ | ||
+ | with an identity if the addition in $ A $ | ||
+ | is commutative, if $ \Omega _ {1} = k $, | ||
+ | where $ \Omega _ {1} $ | ||
+ | is the set of unary operations from $ \Omega $, | ||
+ | and if all operations from $ \Omega $ | ||
+ | are semi-linear over $ k $( | ||
+ | see [[#References|[2]]]–[[#References|[6]]], and [[Semi-linear mapping|Semi-linear mapping]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.J. Higgins, "Groups with multiple operators" ''Proc. London Math. Soc.'' , '''6''' (1956) pp. 366–416</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.G. Kurosh, "Free sums of multi-operator algebras" ''Sibirsk. Mat. Zh.'' , '''1''' : 1 (1960) pp. 62–70 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.G. Kurosh, "Lectures on general algebra" , Chelsea (1963) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.G. Kurosh, "General algebra. Lectures for the academic year 1969/70" , Moscow (1974) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A.G. Kurosh, "Multioperator rings and algebras" ''Russian Math. Surveys'' , '''24''' : 1 (1969) pp. 1–13 ''Uspekhi Mat. Nauk.'' , '''24''' : 1 (1969) pp. 3–15</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> T.M. Baranovich, M.S. Burgin, "Linear <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520062.png" />-algebras" ''Russian Math. Surveys'' , '''30''' : 4 (1975) pp. 65–113 ''Uspekhi Mat. Nauk.'' , '''30''' : 4 (1975) pp. 61–106</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> V.A. Artamonov, "Universal algebras" ''Itogi Nauk. i Tekhn. Algebra. Topol. Geom.'' , '''14''' (1976) pp. 191–248 (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> , ''Rings'' , '''1''' , Novosibirsk (1973) pp. 41–45</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.J. Higgins, "Groups with multiple operators" ''Proc. London Math. Soc.'' , '''6''' (1956) pp. 366–416</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.G. Kurosh, "Free sums of multi-operator algebras" ''Sibirsk. Mat. Zh.'' , '''1''' : 1 (1960) pp. 62–70 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A.G. Kurosh, "Lectures on general algebra" , Chelsea (1963) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A.G. Kurosh, "General algebra. Lectures for the academic year 1969/70" , Moscow (1974) (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> A.G. Kurosh, "Multioperator rings and algebras" ''Russian Math. Surveys'' , '''24''' : 1 (1969) pp. 1–13 ''Uspekhi Mat. Nauk.'' , '''24''' : 1 (1969) pp. 3–15</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> T.M. Baranovich, M.S. Burgin, "Linear <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065200/m06520062.png" />-algebras" ''Russian Math. Surveys'' , '''30''' : 4 (1975) pp. 65–113 ''Uspekhi Mat. Nauk.'' , '''30''' : 4 (1975) pp. 61–106</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> V.A. Artamonov, "Universal algebras" ''Itogi Nauk. i Tekhn. Algebra. Topol. Geom.'' , '''14''' (1976) pp. 191–248 (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> , ''Rings'' , '''1''' , Novosibirsk (1973) pp. 41–45</TD></TR></table> |
Latest revision as of 08:01, 6 June 2020
group with multiple operators, $ \Omega $-
group
A universal algebra which is a group relative to the addition operation $ + $( which need not be commutative) and in which there is given a system of operations $ \Omega $ of arity $ \geq 1 $. It is assumed that the zero element $ 0 $ of the additive group $ A $ is a subalgebra, that is, $ 0 \dots 0 \omega = 0 $ for all $ \omega \in \Omega $. Thus, a multi-operator group combines the concepts of a group, a linear algebra and a ring. An ideal of an $ \Omega $- group is a normal subgroup $ N $ of $ A $ such that
$$ - ( x _ {1} \dots x _ {n} \omega ) + ( x _ {1} \dots x _ {i-} 1 ( a + x _ {i} ) x _ {i+} 1 \dots x _ {n} \omega ) \in N $$
for all $ a \in N $, $ x _ {i} \in A $, $ \omega \in \Omega $, $ 1 \leq i \leq n $. Congruences on a multi-operator group are described by coset classes relative to ideals.
Let $ A $, $ B $ and $ C $ be $ \Omega $- subgroups in an $ \Omega $- group $ G $( that is, subalgebras of the universal algebra $ G $), where $ C $ is generated by $ A $ and $ B $. The mutual commutator $ [ A , B ] $ of the subgroups $ A $ and $ B $ is the ideal in $ C $ generated by all elements of the form
$$ - a - b + a + b , $$
$$ - ( a _ {1} \dots a _ {n} \omega ) - ( b _ {1} \dots b _ {n} \omega ) + ( a _ {1} + b _ {1} ) \dots ( a _ {n} + b _ {n} ) \omega , $$
where $ a , a _ {i} \in A $, $ b , b _ {i} \in B $, $ \omega \in \Omega $. Let $ G ^ { \prime } = [ G , G ] $. A multi-operator group $ G $ is called Abelian if $ G ^ { \prime } = 0 $. Inductively one defines ideals $ G _ {i+} 1 = [ G _ {i} , G ] $, where $ G _ {1} = G ^ { \prime } $, and $ G ^ {(} i+ 1) = [ G ^ {(} i) , G ^ {(} i) ] $, where $ G ^ {(} 1) = G ^ { \prime } $. A multi-operator group $ G $ is called nilpotent if $ G _ {i} = 0 $, and solvable if $ G ^ {(} i) = 0 $ for some $ i $. Many of the properties of the corresponding classes of groups and rings can be transferred to these classes of multi-operator groups. A multi-operator group $ A $ is called a multi-operator (linear) $ \Omega $- algebra over a commutative associative ring $ k $ with an identity if the addition in $ A $ is commutative, if $ \Omega _ {1} = k $, where $ \Omega _ {1} $ is the set of unary operations from $ \Omega $, and if all operations from $ \Omega $ are semi-linear over $ k $( see [2]–[6], and Semi-linear mapping).
References
[1] | P.J. Higgins, "Groups with multiple operators" Proc. London Math. Soc. , 6 (1956) pp. 366–416 |
[2] | A.G. Kurosh, "Free sums of multi-operator algebras" Sibirsk. Mat. Zh. , 1 : 1 (1960) pp. 62–70 (In Russian) |
[3] | A.G. Kurosh, "Lectures on general algebra" , Chelsea (1963) (Translated from Russian) |
[4] | A.G. Kurosh, "General algebra. Lectures for the academic year 1969/70" , Moscow (1974) (In Russian) |
[5] | A.G. Kurosh, "Multioperator rings and algebras" Russian Math. Surveys , 24 : 1 (1969) pp. 1–13 Uspekhi Mat. Nauk. , 24 : 1 (1969) pp. 3–15 |
[6] | T.M. Baranovich, M.S. Burgin, "Linear -algebras" Russian Math. Surveys , 30 : 4 (1975) pp. 65–113 Uspekhi Mat. Nauk. , 30 : 4 (1975) pp. 61–106 |
[7] | V.A. Artamonov, "Universal algebras" Itogi Nauk. i Tekhn. Algebra. Topol. Geom. , 14 (1976) pp. 191–248 (In Russian) |
[8] | , Rings , 1 , Novosibirsk (1973) pp. 41–45 |
Multi-operator group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multi-operator_group&oldid=47920