Namespaces
Variants
Actions

Difference between revisions of "Multi-algebra"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A set in which a system of (in general, partial) multi-operations is given. A partial multi-operation on a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m0651001.png" /> is a partial mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m0651002.png" /> between Cartesian powers of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m0651003.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m0651004.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m0651005.png" /> means a one-element set. A homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m0651006.png" /> of multi-algebras with the same system of multi-operations is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m0651007.png" /> such that if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m0651008.png" /> is a multi-operation mapping the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m0651009.png" />-th power into the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510010.png" />-th, then
+
<!--
 +
m0651001.png
 +
$#A+1 = 27 n = 0
 +
$#C+1 = 27 : ~/encyclopedia/old_files/data/M065/M.0605100 Multi\AAhalgebra
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510011.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510012.png" />. The concept of a multi-algebra is a generalization of that of a [[Universal algebra|universal algebra]]. At the same time a multi-algebra is a particular case of an [[Algebraic system|algebraic system]], since a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510013.png" /> can be identified with the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510014.png" />-ary relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510015.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510017.png" />. Multi-algebras arise most naturally in connection with the functorial approach to universal algebra (see [[#References|[1]]]). Namely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510018.png" /> be a [[Category|category]] whose objects are the natural numbers including zero, where the object <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510019.png" /> is the direct product of the objects <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510021.png" />. Then a functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510022.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510023.png" /> into the category of sets that commutes with direct products is a multi-algebra on the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510024.png" /> with system of multi-operations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510025.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510026.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065100/m06510027.png" />. The homomorphisms in this case are precisely the natural transformations of functors.
+
A set in which a system of (in general, partial) multi-operations is given. A partial multi-operation on a set  $  A $
 +
is a partial mapping  $  f :  A  ^ {n} \rightarrow A  ^ {m} $
 +
between Cartesian powers of  $  A $,
 +
where  $  n , m \geq  0 $.  
 +
Here  $  A  ^ {0} $
 +
means a one-element set. A homomorphism  $  g :  A \rightarrow B $
 +
of multi-algebras with the same system of multi-operations is a mapping  $  g $
 +
such that if  $  f $
 +
is a multi-operation mapping the  $  n $-
 +
th power into the  $  m $-
 +
th, then
 +
 
 +
$$
 +
g  ^ {m} ( f ( x _ {1} \dots x _ {n} ) )  = \
 +
f ( g ( x _ {1} ) \dots g ( x _ {n} ) )
 +
$$
 +
 
 +
for all  $  x _ {i} \in A $.  
 +
The concept of a multi-algebra is a generalization of that of a [[Universal algebra|universal algebra]]. At the same time a multi-algebra is a particular case of an [[Algebraic system|algebraic system]], since a mapping $  f : A  ^ {n} \rightarrow A  ^ {m} $
 +
can be identified with the $  ( m + n ) $-
 +
ary relation $  ( x , f ( x) ) $
 +
on $  A $,  
 +
$  x \in A  ^ {n} $.  
 +
Multi-algebras arise most naturally in connection with the functorial approach to universal algebra (see [[#References|[1]]]). Namely, let $  C $
 +
be a [[Category|category]] whose objects are the natural numbers including zero, where the object m + n $
 +
is the direct product of the objects m $
 +
and $  n $.  
 +
Then a functor $  F $
 +
from $  C $
 +
into the category of sets that commutes with direct products is a multi-algebra on the set $  F ( 1) = A $
 +
with system of multi-operations $  F ( f  ) : A  ^ {n} \rightarrow A  ^ {m} $,  
 +
where $  f : n \rightarrow m $
 +
in $  C $.  
 +
The homomorphisms in this case are precisely the natural transformations of functors.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F.W. Lawvere,  "Functorial semantics of algebraic theories"  ''Proc. Nat. Acad. Sci. USA'' , '''50''' :  5  (1963)  pp. 869–872</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.D. Belousov,  "Algebraic nets and quasi-groups" , Stiintsa , Kishinev  (1971)  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F.W. Lawvere,  "Functorial semantics of algebraic theories"  ''Proc. Nat. Acad. Sci. USA'' , '''50''' :  5  (1963)  pp. 869–872</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  V.D. Belousov,  "Algebraic nets and quasi-groups" , Stiintsa , Kishinev  (1971)  (In Russian)</TD></TR></table>

Revision as of 08:01, 6 June 2020


A set in which a system of (in general, partial) multi-operations is given. A partial multi-operation on a set $ A $ is a partial mapping $ f : A ^ {n} \rightarrow A ^ {m} $ between Cartesian powers of $ A $, where $ n , m \geq 0 $. Here $ A ^ {0} $ means a one-element set. A homomorphism $ g : A \rightarrow B $ of multi-algebras with the same system of multi-operations is a mapping $ g $ such that if $ f $ is a multi-operation mapping the $ n $- th power into the $ m $- th, then

$$ g ^ {m} ( f ( x _ {1} \dots x _ {n} ) ) = \ f ( g ( x _ {1} ) \dots g ( x _ {n} ) ) $$

for all $ x _ {i} \in A $. The concept of a multi-algebra is a generalization of that of a universal algebra. At the same time a multi-algebra is a particular case of an algebraic system, since a mapping $ f : A ^ {n} \rightarrow A ^ {m} $ can be identified with the $ ( m + n ) $- ary relation $ ( x , f ( x) ) $ on $ A $, $ x \in A ^ {n} $. Multi-algebras arise most naturally in connection with the functorial approach to universal algebra (see [1]). Namely, let $ C $ be a category whose objects are the natural numbers including zero, where the object $ m + n $ is the direct product of the objects $ m $ and $ n $. Then a functor $ F $ from $ C $ into the category of sets that commutes with direct products is a multi-algebra on the set $ F ( 1) = A $ with system of multi-operations $ F ( f ) : A ^ {n} \rightarrow A ^ {m} $, where $ f : n \rightarrow m $ in $ C $. The homomorphisms in this case are precisely the natural transformations of functors.

References

[1] F.W. Lawvere, "Functorial semantics of algebraic theories" Proc. Nat. Acad. Sci. USA , 50 : 5 (1963) pp. 869–872
[2] V.D. Belousov, "Algebraic nets and quasi-groups" , Stiintsa , Kishinev (1971) (In Russian)
How to Cite This Entry:
Multi-algebra. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multi-algebra&oldid=47912
This article was adapted from an original article by V.A. Artamonov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article