Difference between revisions of "Modulus of an automorphism"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | m0645501.png | ||
+ | $#A+1 = 36 n = 0 | ||
+ | $#C+1 = 36 : ~/encyclopedia/old_files/data/M064/M.0604550 Modulus of an automorphism | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A positive real number associated to an automorphism of a locally compact group. Let $ G $ | |
+ | be such a group and let $ \alpha $ | ||
+ | be an automorphism of $ G $, | ||
+ | regarded as a topological group. Then the modulus of $ \alpha $ | ||
+ | is defined by | ||
− | + | $$ | |
+ | \mathop{\rm mod} _ {G} ( \alpha ) = \ | ||
− | + | \frac{\mu ( \alpha S ) }{\mu ( S) } | |
+ | , | ||
+ | $$ | ||
− | + | where $ \mu $ | |
+ | is left-invariant [[Haar measure|Haar measure]] on $ G $ | ||
+ | and $ S $ | ||
+ | is any compact subset of $ G $ | ||
+ | with positive measure (indeed, $ \mathop{\rm mod} _ {G} ( \alpha ) $ | ||
+ | does not depend on $ S $). | ||
+ | If $ G $ | ||
+ | is compact or discrete, then $ \mathop{\rm mod} _ {G} ( \alpha ) \equiv 1 $, | ||
+ | since for a compact group one can put $ S = G $, | ||
+ | and for a discrete group one can take $ S = \{ 1 \} $, | ||
+ | where $ 1 $ | ||
+ | is the identity element of $ G $. | ||
− | If | + | If $ \alpha $ |
+ | and $ \beta $ | ||
+ | are two automorphism of $ G $, | ||
+ | then | ||
+ | |||
+ | $$ | ||
+ | \mathop{\rm mod} _ {G} ( \alpha \cdot \beta ) = \ | ||
+ | \mathop{\rm mod} _ {G} ( \alpha ) \ | ||
+ | \mathop{\rm mod} _ {G} ( \beta ) . | ||
+ | $$ | ||
+ | |||
+ | If $ \Gamma $ | ||
+ | is a topological group which acts continuously on $ G $ | ||
+ | by automorphisms, then the associated homomorphism $ \pi : \Gamma \rightarrow \mathop{\rm Aut} G $ | ||
+ | defines a continuous homomorphism $ \mathop{\rm mod} _ {G} \circ \pi : \Gamma \rightarrow \mathbf R _ {+} ^ {*} $, | ||
+ | where $ \mathbf R _ {+} ^ {*} $ | ||
+ | is the multiplicative group of positive real numbers. In particular, if $ \Gamma = G $ | ||
+ | and $ \pi ( g) ( x) = g x g ^ {-} 1 $, | ||
+ | then $ \pi \circ \mathop{\rm mod} _ {G} : G \rightarrow \mathbf R _ {+} ^ {*} $ | ||
+ | is a continuous homomorphism. This homomorphism is trivial if and only if the left-invariant Haar measure on $ G $ | ||
+ | is simultaneously right invariant. Groups satisfying the latter condition are called unimodular. | ||
+ | |||
+ | If $ K $ | ||
+ | is a locally compact skew-field, then each non-zero element $ a \in K $ | ||
+ | defines an automorphism $ \mu ( a) $ | ||
+ | of the additive group of $ K $ | ||
+ | via multiplication by $ a $. | ||
+ | The function $ \mathop{\rm mod} _ {K} \circ \mu : K \setminus \{ 0 \} \rightarrow \mathbf R _ {+} ^ {*} $ | ||
+ | is used in the study of the structure of locally compact skew-fields. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Weil, "l'Intégration dans les groupes topologiques et ses applications" , Hermann (1940)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Weil, "Basic number theory" , Springer (1974)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Weil, "l'Intégration dans les groupes topologiques et ses applications" , Hermann (1940)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> A. Weil, "Basic number theory" , Springer (1974)</TD></TR></table> |
Latest revision as of 08:01, 6 June 2020
A positive real number associated to an automorphism of a locally compact group. Let $ G $
be such a group and let $ \alpha $
be an automorphism of $ G $,
regarded as a topological group. Then the modulus of $ \alpha $
is defined by
$$ \mathop{\rm mod} _ {G} ( \alpha ) = \ \frac{\mu ( \alpha S ) }{\mu ( S) } , $$
where $ \mu $ is left-invariant Haar measure on $ G $ and $ S $ is any compact subset of $ G $ with positive measure (indeed, $ \mathop{\rm mod} _ {G} ( \alpha ) $ does not depend on $ S $). If $ G $ is compact or discrete, then $ \mathop{\rm mod} _ {G} ( \alpha ) \equiv 1 $, since for a compact group one can put $ S = G $, and for a discrete group one can take $ S = \{ 1 \} $, where $ 1 $ is the identity element of $ G $.
If $ \alpha $ and $ \beta $ are two automorphism of $ G $, then
$$ \mathop{\rm mod} _ {G} ( \alpha \cdot \beta ) = \ \mathop{\rm mod} _ {G} ( \alpha ) \ \mathop{\rm mod} _ {G} ( \beta ) . $$
If $ \Gamma $ is a topological group which acts continuously on $ G $ by automorphisms, then the associated homomorphism $ \pi : \Gamma \rightarrow \mathop{\rm Aut} G $ defines a continuous homomorphism $ \mathop{\rm mod} _ {G} \circ \pi : \Gamma \rightarrow \mathbf R _ {+} ^ {*} $, where $ \mathbf R _ {+} ^ {*} $ is the multiplicative group of positive real numbers. In particular, if $ \Gamma = G $ and $ \pi ( g) ( x) = g x g ^ {-} 1 $, then $ \pi \circ \mathop{\rm mod} _ {G} : G \rightarrow \mathbf R _ {+} ^ {*} $ is a continuous homomorphism. This homomorphism is trivial if and only if the left-invariant Haar measure on $ G $ is simultaneously right invariant. Groups satisfying the latter condition are called unimodular.
If $ K $ is a locally compact skew-field, then each non-zero element $ a \in K $ defines an automorphism $ \mu ( a) $ of the additive group of $ K $ via multiplication by $ a $. The function $ \mathop{\rm mod} _ {K} \circ \mu : K \setminus \{ 0 \} \rightarrow \mathbf R _ {+} ^ {*} $ is used in the study of the structure of locally compact skew-fields.
References
[1] | N. Bourbaki, "Elements of mathematics. Integration" , Addison-Wesley (1975) pp. Chapt.6;7;8 (Translated from French) |
[2] | A. Weil, "l'Intégration dans les groupes topologiques et ses applications" , Hermann (1940) |
[3] | A. Weil, "Basic number theory" , Springer (1974) |
Modulus of an automorphism. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Modulus_of_an_automorphism&oldid=47878