Difference between revisions of "Modification"
From Encyclopedia of Mathematics
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | m0644001.png | ||
+ | $#A+1 = 7 n = 0 | ||
+ | $#C+1 = 7 : ~/encyclopedia/old_files/data/M064/M.0604400 Modification | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''of an analytic space'' | ''of an analytic space'' | ||
− | An analytic mapping | + | An analytic mapping $ f : X \rightarrow Y $ |
+ | of analytic spaces such that for certain analytic sets $ S \subset X $ | ||
+ | and $ T \subset Y $ | ||
+ | of smaller dimensions, the conditions | ||
− | + | $$ | |
+ | f : X \setminus S \rightarrow Y \setminus T \ \ | ||
+ | \textrm{ is an isomorphism } | ||
+ | $$ | ||
and | and | ||
− | + | $$ | |
+ | f ( S) = T | ||
+ | $$ | ||
− | hold. A modification is also called a contraction of | + | hold. A modification is also called a contraction of $ S $ |
+ | onto $ T $. | ||
+ | An example of a modification is a [[Monoidal transformation|monoidal transformation]]. | ||
See also [[Exceptional analytic set|Exceptional analytic set]]; [[Exceptional subvariety|Exceptional subvariety]]. | See also [[Exceptional analytic set|Exceptional analytic set]]; [[Exceptional subvariety|Exceptional subvariety]]. | ||
Line 15: | Line 37: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Behnke, K. Stein, "Modifikation komplexer Mannigfaltigkeiten und Riemannschen Gebiete" ''Math. Ann.'' , '''124''' : 1 (1951) pp. 1–16</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> H. Behnke, K. Stein, "Modifikation komplexer Mannigfaltigkeiten und Riemannschen Gebiete" ''Math. Ann.'' , '''124''' : 1 (1951) pp. 1–16</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> |
Latest revision as of 08:01, 6 June 2020
of an analytic space
An analytic mapping $ f : X \rightarrow Y $ of analytic spaces such that for certain analytic sets $ S \subset X $ and $ T \subset Y $ of smaller dimensions, the conditions
$$ f : X \setminus S \rightarrow Y \setminus T \ \ \textrm{ is an isomorphism } $$
and
$$ f ( S) = T $$
hold. A modification is also called a contraction of $ S $ onto $ T $. An example of a modification is a monoidal transformation.
See also Exceptional analytic set; Exceptional subvariety.
References
[1] | H. Behnke, K. Stein, "Modifikation komplexer Mannigfaltigkeiten und Riemannschen Gebiete" Math. Ann. , 124 : 1 (1951) pp. 1–16 |
Comments
References
[a1] | R. Hartshorne, "Algebraic geometry" , Springer (1977) MR0463157 Zbl 0367.14001 |
How to Cite This Entry:
Modification. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Modification&oldid=47868
Modification. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Modification&oldid=47868
This article was adapted from an original article by A.L. Onishchik (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article