Difference between revisions of "Minimal sufficient statistic"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | m0639101.png | ||
+ | $#A+1 = 26 n = 0 | ||
+ | $#C+1 = 26 : ~/encyclopedia/old_files/data/M063/M.0603910 Minimal sufficient statistic | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A statistic $ X $ | |
+ | which is a [[Sufficient statistic|sufficient statistic]] for a family of distributions $ {\mathcal P} = \{ { {\mathsf P} _ \theta } : {\theta \in \Theta } \} $ | ||
+ | and is such that for any other sufficient statistic $ Y $, | ||
+ | $ X = g ( Y ) $, | ||
+ | where $ g $ | ||
+ | is some measurable function. A sufficient statistic is minimal if and only if the sufficient $ \sigma $- | ||
+ | algebra it generates is minimal, that is, is contained in any other sufficient $ \sigma $- | ||
+ | algebra. | ||
− | is sufficient and | + | The notion of a $ {\mathcal P} $- |
+ | minimal sufficient statistic (or $ \sigma $- | ||
+ | algebra) is also used. A sufficient $ \sigma $- | ||
+ | algebra $ {\mathcal B} _ {0} $( | ||
+ | and the corresponding statistic) is called $ {\mathcal P} $- | ||
+ | minimal if $ {\mathcal B} _ {0} $ | ||
+ | is contained in the completion $ \overline{ {\mathcal B} }\; $, | ||
+ | relative to the family of distributions $ {\mathcal P} $, | ||
+ | of any sufficient $ \sigma $- | ||
+ | algebra $ {\mathcal B} $. | ||
+ | If the family $ {\mathcal P} $ | ||
+ | is dominated by a $ \sigma $- | ||
+ | finite measure $ \mu $, | ||
+ | then the $ \sigma $- | ||
+ | algebra $ {\mathcal B} _ {0} $ | ||
+ | generated by the family of densities | ||
− | + | $$ | |
+ | \left \{ { | ||
+ | p _ \theta ( \omega ) = | ||
+ | \frac{d p }{d \mu } | ||
− | + | ( \omega ) } : {\theta \in \Theta } \right \} | |
+ | $$ | ||
+ | |||
+ | is sufficient and $ {\mathcal P} $- | ||
+ | minimal. | ||
+ | |||
+ | A general example of a minimal sufficient statistic is given by the canonical statistic $ T = ( T _ {1} \dots T _ {n} ) $ | ||
+ | of an exponential family | ||
+ | |||
+ | $$ | ||
+ | p _ \theta ( \omega ) = \ | ||
+ | C ( \theta ) \mathop{\rm exp} \ | ||
+ | \sum _ { j } Q _ {j} ( \theta ) T _ {j} ( \omega ). | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.-R. Barra, "Mathematical bases of statistics" , Acad. Press (1981) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Schmetterer, "Introduction to mathematical statistics" , Springer (1974) (Translated from German)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.-R. Barra, "Mathematical bases of statistics" , Acad. Press (1981) (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L. Schmetterer, "Introduction to mathematical statistics" , Springer (1974) (Translated from German)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.L. Lehmann, "Theory of point estimation" , Wiley (1983)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.L. Lehmann, "Theory of point estimation" , Wiley (1983)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)</TD></TR></table> |
Latest revision as of 08:00, 6 June 2020
A statistic $ X $
which is a sufficient statistic for a family of distributions $ {\mathcal P} = \{ { {\mathsf P} _ \theta } : {\theta \in \Theta } \} $
and is such that for any other sufficient statistic $ Y $,
$ X = g ( Y ) $,
where $ g $
is some measurable function. A sufficient statistic is minimal if and only if the sufficient $ \sigma $-
algebra it generates is minimal, that is, is contained in any other sufficient $ \sigma $-
algebra.
The notion of a $ {\mathcal P} $- minimal sufficient statistic (or $ \sigma $- algebra) is also used. A sufficient $ \sigma $- algebra $ {\mathcal B} _ {0} $( and the corresponding statistic) is called $ {\mathcal P} $- minimal if $ {\mathcal B} _ {0} $ is contained in the completion $ \overline{ {\mathcal B} }\; $, relative to the family of distributions $ {\mathcal P} $, of any sufficient $ \sigma $- algebra $ {\mathcal B} $. If the family $ {\mathcal P} $ is dominated by a $ \sigma $- finite measure $ \mu $, then the $ \sigma $- algebra $ {\mathcal B} _ {0} $ generated by the family of densities
$$ \left \{ { p _ \theta ( \omega ) = \frac{d p }{d \mu } ( \omega ) } : {\theta \in \Theta } \right \} $$
is sufficient and $ {\mathcal P} $- minimal.
A general example of a minimal sufficient statistic is given by the canonical statistic $ T = ( T _ {1} \dots T _ {n} ) $ of an exponential family
$$ p _ \theta ( \omega ) = \ C ( \theta ) \mathop{\rm exp} \ \sum _ { j } Q _ {j} ( \theta ) T _ {j} ( \omega ). $$
References
[1] | J.-R. Barra, "Mathematical bases of statistics" , Acad. Press (1981) (Translated from French) |
[2] | L. Schmetterer, "Introduction to mathematical statistics" , Springer (1974) (Translated from German) |
Comments
References
[a1] | E.L. Lehmann, "Theory of point estimation" , Wiley (1983) |
[a2] | E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986) |
Minimal sufficient statistic. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Minimal_sufficient_statistic&oldid=47843