Difference between revisions of "Mehler-Fock transform"
Ulf Rehmann (talk | contribs) m (moved Mehler–Fock transform to Mehler-Fock transform: ascii title) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | m0633401.png | ||
+ | $#A+1 = 22 n = 0 | ||
+ | $#C+1 = 22 : ~/encyclopedia/old_files/data/M063/M.0603340 Mehler\ANDFock transform, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''Mehler–Fok transform'' | ''Mehler–Fok transform'' | ||
The [[Integral transform|integral transform]] | The [[Integral transform|integral transform]] | ||
− | + | $$ \tag{1 } | |
+ | F( x) = \int\limits _ { 0 } ^ \infty P _ {i \tau - 1/2 } ( x) f( \tau ) d \tau ,\ \ | ||
+ | 1 \leq x < \infty , | ||
+ | $$ | ||
− | where | + | where $ P _ \nu ( x) $ |
+ | is the Legendre function of the first kind (cf. [[Legendre functions|Legendre functions]]). If $ f \in L[ 0, \infty ) $, | ||
+ | the function $ | f ^ { \prime } ( \tau ) | $ | ||
+ | is locally integrable on $ [ 0, \infty ) $ | ||
+ | and $ f( 0) = 0 $, | ||
+ | then the following inversion formula is valid: | ||
− | + | $$ \tag{2 } | |
+ | f( \tau ) = \tau \mathop{\rm tanh} \pi \tau \int\limits _ { 1 } ^ \infty P _ {i \tau - 1/2 } ( x) F( x) dx. | ||
+ | $$ | ||
The Parseval identity. Consider the Mehler–Fock transform and its inverse defined by the equalities | The Parseval identity. Consider the Mehler–Fock transform and its inverse defined by the equalities | ||
− | + | $$ | |
+ | G( \tau ) = \int\limits _ { 1 } ^ \infty \sqrt {\tau \mathop{\rm tanh} \pi \tau } P _ {i \tau - 1/2 } | ||
+ | ( x) g( x) dx, | ||
+ | $$ | ||
− | + | $$ | |
+ | g( x) = \int\limits _ { 0 } ^ \infty \sqrt {\tau \mathop{\rm tanh} \ | ||
+ | \pi \tau } P _ {i \tau - 1/2 } ( x) G( \tau ) d \tau . | ||
+ | $$ | ||
− | If | + | If $ g _ {i} ( x) $, |
+ | $ i = 1, 2 $, | ||
+ | are arbitrary real-valued functions satisfying the conditions | ||
− | + | $$ | |
+ | g _ {i} ( x) x ^ {-} 1/2 \mathop{\rm ln} ( 1+ x) \in L( 1, \infty ),\ \ | ||
+ | g _ {i} ( x) \in L _ {2} ( 1, \infty ), | ||
+ | $$ | ||
then | then | ||
− | + | $$ | |
+ | \int\limits _ { 0 } ^ \infty G _ {1} ( \tau ) G _ {2} ( \tau ) d \tau = \ | ||
+ | \int\limits _ { 1 } ^ \infty g _ {1} ( x) g _ {2} ( x) dx. | ||
+ | $$ | ||
The generalized Mehler–Fock transform and the corresponding inversion formula are: | The generalized Mehler–Fock transform and the corresponding inversion formula are: | ||
− | + | $$ \tag{3 } | |
+ | F( x) = \int\limits _ { 0 } ^ \infty P _ {i \tau - 1/2 } ^ {(} k) ( x) f( \tau ) d \tau , | ||
+ | $$ | ||
and | and | ||
− | + | $$ \tag{4 } | |
+ | f( \tau ) = | ||
+ | \frac{1} \pi | ||
+ | \tau \sinh \pi \tau \Gamma \left ( | ||
+ | \frac{1}{2} | ||
+ | - k + i \tau | ||
+ | \right ) \Gamma \left ( | ||
+ | \frac{1}{2} | ||
+ | - k - i \tau \right ) \times | ||
+ | $$ | ||
− | + | $$ | |
+ | \times | ||
+ | \int\limits _ { 1 } ^ \infty P _ {i \tau - 1/2 } ^ {(} k) ( x) F( x) dx, | ||
+ | $$ | ||
− | where | + | where $ P _ \nu ^ {(} k) ( x) $ |
+ | are the associated Legendre functions of the first kind. For $ k= 0 $ | ||
+ | formulas (3) and (4) reduce to (1) and (2); for $ k = 1/2 $, | ||
+ | $ y = \cosh \alpha $, | ||
+ | formulas (3) and (4) lead to the [[Fourier cosine transform|Fourier cosine transform]], and for $ k = - 1/2 $, | ||
+ | $ y = \cosh \alpha $ | ||
+ | to the [[Fourier sine transform|Fourier sine transform]]. The transforms (1) and (2) were introduced by F.G. Mehler [[#References|[1]]]. The basic theorems were proved by V.A. Fock [V.A. Fok]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> F.G. Mehler, "Ueber eine mit den Kugel- und Cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Electricitätsvertheilung" ''Math. Ann.'' , '''18''' (1881) pp. 161–194</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.A. Fok, "On the representation of an arbitrary function by an integral involving Legendre functions with complex index" ''Dokl. Akad. Nauk SSSR'' , '''39''' (1943) pp. 253–256 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.A. Ditkin, A.P. Prudnikov, "Operational calculus" ''Progress in Math.'' , '''1''' (1968) pp. 1–75 ''Itogi Nauk. Mat. Anal. 1966'' (1967) pp. 7–82</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> F.G. Mehler, "Ueber eine mit den Kugel- und Cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Electricitätsvertheilung" ''Math. Ann.'' , '''18''' (1881) pp. 161–194</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.A. Fok, "On the representation of an arbitrary function by an integral involving Legendre functions with complex index" ''Dokl. Akad. Nauk SSSR'' , '''39''' (1943) pp. 253–256 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.A. Ditkin, A.P. Prudnikov, "Operational calculus" ''Progress in Math.'' , '''1''' (1968) pp. 1–75 ''Itogi Nauk. Mat. Anal. 1966'' (1967) pp. 7–82</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.N. Sneddon, "The use of integral transforms" , McGraw-Hill (1972)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> I.N. Sneddon, "The use of integral transforms" , McGraw-Hill (1972)</TD></TR></table> |
Revision as of 08:00, 6 June 2020
Mehler–Fok transform
$$ \tag{1 } F( x) = \int\limits _ { 0 } ^ \infty P _ {i \tau - 1/2 } ( x) f( \tau ) d \tau ,\ \ 1 \leq x < \infty , $$
where $ P _ \nu ( x) $ is the Legendre function of the first kind (cf. Legendre functions). If $ f \in L[ 0, \infty ) $, the function $ | f ^ { \prime } ( \tau ) | $ is locally integrable on $ [ 0, \infty ) $ and $ f( 0) = 0 $, then the following inversion formula is valid:
$$ \tag{2 } f( \tau ) = \tau \mathop{\rm tanh} \pi \tau \int\limits _ { 1 } ^ \infty P _ {i \tau - 1/2 } ( x) F( x) dx. $$
The Parseval identity. Consider the Mehler–Fock transform and its inverse defined by the equalities
$$ G( \tau ) = \int\limits _ { 1 } ^ \infty \sqrt {\tau \mathop{\rm tanh} \pi \tau } P _ {i \tau - 1/2 } ( x) g( x) dx, $$
$$ g( x) = \int\limits _ { 0 } ^ \infty \sqrt {\tau \mathop{\rm tanh} \ \pi \tau } P _ {i \tau - 1/2 } ( x) G( \tau ) d \tau . $$
If $ g _ {i} ( x) $, $ i = 1, 2 $, are arbitrary real-valued functions satisfying the conditions
$$ g _ {i} ( x) x ^ {-} 1/2 \mathop{\rm ln} ( 1+ x) \in L( 1, \infty ),\ \ g _ {i} ( x) \in L _ {2} ( 1, \infty ), $$
then
$$ \int\limits _ { 0 } ^ \infty G _ {1} ( \tau ) G _ {2} ( \tau ) d \tau = \ \int\limits _ { 1 } ^ \infty g _ {1} ( x) g _ {2} ( x) dx. $$
The generalized Mehler–Fock transform and the corresponding inversion formula are:
$$ \tag{3 } F( x) = \int\limits _ { 0 } ^ \infty P _ {i \tau - 1/2 } ^ {(} k) ( x) f( \tau ) d \tau , $$
and
$$ \tag{4 } f( \tau ) = \frac{1} \pi \tau \sinh \pi \tau \Gamma \left ( \frac{1}{2} - k + i \tau \right ) \Gamma \left ( \frac{1}{2} - k - i \tau \right ) \times $$
$$ \times \int\limits _ { 1 } ^ \infty P _ {i \tau - 1/2 } ^ {(} k) ( x) F( x) dx, $$
where $ P _ \nu ^ {(} k) ( x) $ are the associated Legendre functions of the first kind. For $ k= 0 $ formulas (3) and (4) reduce to (1) and (2); for $ k = 1/2 $, $ y = \cosh \alpha $, formulas (3) and (4) lead to the Fourier cosine transform, and for $ k = - 1/2 $, $ y = \cosh \alpha $ to the Fourier sine transform. The transforms (1) and (2) were introduced by F.G. Mehler [1]. The basic theorems were proved by V.A. Fock [V.A. Fok].
References
[1] | F.G. Mehler, "Ueber eine mit den Kugel- und Cylinderfunctionen verwandte Function und ihre Anwendung in der Theorie der Electricitätsvertheilung" Math. Ann. , 18 (1881) pp. 161–194 |
[2] | V.A. Fok, "On the representation of an arbitrary function by an integral involving Legendre functions with complex index" Dokl. Akad. Nauk SSSR , 39 (1943) pp. 253–256 (In Russian) |
[3] | V.A. Ditkin, A.P. Prudnikov, "Operational calculus" Progress in Math. , 1 (1968) pp. 1–75 Itogi Nauk. Mat. Anal. 1966 (1967) pp. 7–82 |
Comments
References
[a1] | I.N. Sneddon, "The use of integral transforms" , McGraw-Hill (1972) |
Mehler-Fock transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mehler-Fock_transform&oldid=47817