Difference between revisions of "Maximal correlation coefficient"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | m0629401.png | ||
+ | $#A+1 = 18 n = 0 | ||
+ | $#C+1 = 18 : ~/encyclopedia/old_files/data/M062/M.0602940 Maximal correlation coefficient | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | If this least upper bound is attained at | + | A measure of dependence of two random variables $ X $ |
+ | and $ Y $, | ||
+ | defined as the least upper bound of the values of the correlation coefficients between the real random variables $ \phi _ {1} ( X) $ | ||
+ | and $ \phi _ {2} ( Y) $, | ||
+ | which are functions of $ X $ | ||
+ | and $ Y $ | ||
+ | such that $ {\mathsf E} \phi _ {1} ( X) = {\mathsf E} \phi _ {2} ( Y) = 0 $ | ||
+ | and $ {\mathsf D} \phi _ {1} ( X) = {\mathsf D} \phi _ {2} ( Y) = 1 $: | ||
+ | |||
+ | $$ | ||
+ | \rho ^ {*} ( X , Y ) = \ | ||
+ | \sup {\mathsf E} [ \phi _ {1} ( X) \phi _ {2} ( Y) ] . | ||
+ | $$ | ||
+ | |||
+ | If this least upper bound is attained at $ \phi _ {1} = \phi _ {1} ^ {*} ( X) $ | ||
+ | and $ \phi _ {2} = \phi _ {2} ^ {*} ( Y) $, | ||
+ | then the maximal correlation coefficient between $ X $ | ||
+ | and $ Y $ | ||
+ | is equal to the [[Correlation coefficient|correlation coefficient]] of $ \phi _ {1} ^ {*} ( X) $ | ||
+ | and $ \phi _ {2} ^ {*} ( Y) $. | ||
+ | The maximal correlation coefficient has the property: $ \rho ^ {*} ( X , Y ) = 0 $ | ||
+ | is necessary and sufficient for the independence of $ X $ | ||
+ | and $ Y $. | ||
+ | If there is a linear correlation between the variables, then the maximal correlation coefficient coincides with the usual correlation coefficient. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> O.V. Sarmanov, "The maximum correlation coefficient (symmetric case)" ''Dokl. Akad. Nauk SSSR'' , '''120''' : 4 (1958) pp. 715–718 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O.V. Sarmanov, ''Dokl. Akad. Nauk SSSR'' , '''53''' : 9 (1946) pp. 781–784</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> O.V. Sarmanov, "The maximum correlation coefficient (symmetric case)" ''Dokl. Akad. Nauk SSSR'' , '''120''' : 4 (1958) pp. 715–718 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> O.V. Sarmanov, ''Dokl. Akad. Nauk SSSR'' , '''53''' : 9 (1946) pp. 781–784</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 08:00, 6 June 2020
A measure of dependence of two random variables $ X $
and $ Y $,
defined as the least upper bound of the values of the correlation coefficients between the real random variables $ \phi _ {1} ( X) $
and $ \phi _ {2} ( Y) $,
which are functions of $ X $
and $ Y $
such that $ {\mathsf E} \phi _ {1} ( X) = {\mathsf E} \phi _ {2} ( Y) = 0 $
and $ {\mathsf D} \phi _ {1} ( X) = {\mathsf D} \phi _ {2} ( Y) = 1 $:
$$ \rho ^ {*} ( X , Y ) = \ \sup {\mathsf E} [ \phi _ {1} ( X) \phi _ {2} ( Y) ] . $$
If this least upper bound is attained at $ \phi _ {1} = \phi _ {1} ^ {*} ( X) $ and $ \phi _ {2} = \phi _ {2} ^ {*} ( Y) $, then the maximal correlation coefficient between $ X $ and $ Y $ is equal to the correlation coefficient of $ \phi _ {1} ^ {*} ( X) $ and $ \phi _ {2} ^ {*} ( Y) $. The maximal correlation coefficient has the property: $ \rho ^ {*} ( X , Y ) = 0 $ is necessary and sufficient for the independence of $ X $ and $ Y $. If there is a linear correlation between the variables, then the maximal correlation coefficient coincides with the usual correlation coefficient.
References
[1] | O.V. Sarmanov, "The maximum correlation coefficient (symmetric case)" Dokl. Akad. Nauk SSSR , 120 : 4 (1958) pp. 715–718 (In Russian) |
[2] | O.V. Sarmanov, Dokl. Akad. Nauk SSSR , 53 : 9 (1946) pp. 781–784 |
[3] | Yu.V. [Yu.V. Prokhorov] Prohorov, Yu.A. Rozanov, "Probability theory, basic concepts. Limit theorems, random processes" , Springer (1969) (Translated from Russian) |
Comments
See also Canonical correlation.
References
[a1] | H. Gebelein, "Das statistische Problem der Korrelation als Variations- und Eigenwertproblem und sein Zusammenhang mit der Ausgleichungrechnung" Z. Angew. Math. Mech. , 21 (1941) pp. 364–379 |
[a2] | R. Koyak, "On measuring internal dependence in a set of random variables" Ann. Statist. , 15 (1987) pp. 1215–1229 |
Maximal correlation coefficient. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Maximal_correlation_coefficient&oldid=47799