Namespaces
Variants
Actions

Difference between revisions of "Martin boundary in the theory of Markov processes"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
m0625601.png
 +
$#A+1 = 87 n = 1
 +
$#C+1 = 87 : ~/encyclopedia/old_files/data/M062/M.0602560 Martin boundary in the theory of Markov processes
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
The boundary of the state space of a [[Markov process|Markov process]] or of its image in some compact space, constructed by a scheme similar to the Martin scheme (see [[#References|[1]]]).
 
The boundary of the state space of a [[Markov process|Markov process]] or of its image in some compact space, constructed by a scheme similar to the Martin scheme (see [[#References|[1]]]).
  
 
A probabilistic interpretation of Martin's construction was first proposed by J.L. Doob (see [[#References|[4]]]), who discussed the case of discrete Markov chains.
 
A probabilistic interpretation of Martin's construction was first proposed by J.L. Doob (see [[#References|[4]]]), who discussed the case of discrete Markov chains.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m0625601.png" /> be the [[Transition function|transition function]] of a homogeneous Markov process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m0625602.png" />, given on a separable, locally compact space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m0625603.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m0625604.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m0625605.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m0625606.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m0625607.png" /> is the family of Borel sets in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m0625608.png" />. A function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m0625609.png" /> defined for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256012.png" />, which is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256013.png" />-measurable for fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256014.png" /> is called a Green's function if for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256015.png" />,
+
Let $  P ( t , x , B ) $
 +
be the [[Transition function|transition function]] of a homogeneous Markov process $  X = ( x _ {t} , \zeta , F _ {t} , {\mathsf P} _ {x} ) $,  
 +
given on a separable, locally compact space $  E $,  
 +
where $  t \geq  0 $,  
 +
$  x \in E $,  
 +
$  B \in {\mathcal B} $,  
 +
and $  {\mathcal B} $
 +
is the family of Borel sets in $  E $.  
 +
A function $  g _  \alpha  ( x , y ) \geq  0 $
 +
defined for $  \alpha \geq  0 $,  
 +
$  x \in E $,  
 +
$  y \in E $,  
 +
which is $  ( {\mathcal B} \times {\mathcal B} ) $-
 +
measurable for fixed $  \alpha $
 +
is called a Green's function if for each $  B \in {\mathcal B} $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256016.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { B } g _  \alpha  ( x , y ) m ( d y )  \equiv \
 +
\int\limits _ { 0 } ^  \infty  e ^ {- \alpha t } P ( t , x , B )  d t ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256017.png" /> is a measure on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256018.png" />. To avoid ambiguity in the definition of a Green's function, it can be required in addition that for any continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256019.png" /> with compact support, the function
+
where m $
 +
is a measure on $  {\mathcal B} $.  
 +
To avoid ambiguity in the definition of a Green's function, it can be required in addition that for any continuous function $  f ( x) $
 +
with compact support, the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256020.png" /></td> </tr></table>
+
$$
 +
g _  \alpha  ( \cdot )  = \
 +
\int\limits _ { E } f ( x)
 +
g _  \alpha  ( x , \cdot )
 +
m ( d x )
 +
$$
  
is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256022.png" />-continuous (meaning that there exists a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256023.png" /> which is left continuous in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256024.png" /> and such that
+
is $  \Lambda $-
 +
continuous (meaning that there exists a function $  F ( t , \omega ) $
 +
which is left continuous in $  t $
 +
and such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256025.png" /></td> </tr></table>
+
$$
 +
{\mathsf P} _ {x} \{ F ( t , \omega ) \neq
 +
g _  \alpha  ( x _ {t} ( \omega ) ) \}  \equiv  0 ,\ \
 +
x \in E ,\  t > 0 \textrm{ )  } .
 +
$$
  
Fixing a measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256026.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256027.png" /> and postulating the existence of a Green's function, one defines the Martin kernel
+
Fixing a measure $  \gamma $
 +
in $  {\mathcal B} $
 +
and postulating the existence of a Green's function, one defines the Martin kernel
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256028.png" /></td> </tr></table>
+
$$
 +
K _ {y}  ^  \alpha  ( x)  = \
 +
 
 +
\frac{g _  \alpha  ( x , y ) }{q ( y ) }
 +
,
 +
$$
  
 
where
 
where
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256029.png" /></td> </tr></table>
+
$$
 +
q ( y)  = \int\limits _ { E }
 +
g _  \alpha  ( x , y )
 +
\gamma ( d x )
 +
$$
  
(here some restrictions must be introduced to ensure, in particular, the positivity and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256030.png" />-continuity of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256031.png" />). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256032.png" /> is the unit measure concentrated at some point and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256033.png" /> is a [[Wiener process|Wiener process]] terminating at the first exit time for some domain, then the definition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256034.png" /> reduces to an analogous form [[#References|[1]]]. Under broad conditions one can establish the existence of a compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256035.png" /> (the  "Martin compactum" ), a measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256036.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256037.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256038.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256039.png" />) and a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256040.png" /> for which: a) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256041.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256042.png" />; b) the function
+
(here some restrictions must be introduced to ensure, in particular, the positivity and $  \Lambda $-
 +
continuity of $  q ( y) $).  
 +
If $  \gamma $
 +
is the unit measure concentrated at some point and $  X $
 +
is a [[Wiener process|Wiener process]] terminating at the first exit time for some domain, then the definition of $  K _ {y}  ^ {0} ( x) $
 +
reduces to an analogous form [[#References|[1]]]. Under broad conditions one can establish the existence of a compact set $  {\mathcal E} $(
 +
the  "Martin compactum" ), a measure $  K _ {y}  ^  \alpha  ( d x ) $
 +
on $  {\mathcal B} $(
 +
$  \alpha \geq  0 $,  
 +
$  y \in {\mathcal E} $)  
 +
and a mapping $  i : E \rightarrow {\mathcal E} $
 +
for which: a) $  i ( E) $
 +
is dense in $  {\mathcal E} $;  
 +
b) the function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256043.png" /></td> </tr></table>
+
$$
 +
K _ {y}  ^  \alpha  ( f  )  = \
 +
\int\limits _  {\mathcal B}  f ( x) K _ {y}  ^  \alpha  ( d x )
 +
$$
  
separates points and is continuous on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256044.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256045.png" /> runs through all continuous function in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256046.png" /> with compact support; and c) the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256047.png" /> coincides with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256048.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256049.png" />. The boundary of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256050.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256051.png" /> is called the Martin boundary or exit-boundary (in the study of decompositions of excessive measures the dual object, the entrance-boundary, arises; see [[#References|[3]]], [[#References|[4]]]).
+
separates points and is continuous on $  {\mathcal E} $
 +
as $  f $
 +
runs through all continuous function in $  E $
 +
with compact support; and c) the measure $  K _ {i ( y) }  ^  \alpha  ( d x ) $
 +
coincides with $  K _ {y}  ^  \alpha  ( x) m ( d x ) $
 +
if $  y \in E $.  
 +
The boundary of the set $  i ( E) $
 +
in $  {\mathcal E} $
 +
is called the Martin boundary or exit-boundary (in the study of decompositions of excessive measures the dual object, the entrance-boundary, arises; see [[#References|[3]]], [[#References|[4]]]).
  
In order to describe the properties of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256052.png" /> it is convenient to invoke <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256054.png" />-processes in the sense of Doob: to each [[Excessive function|excessive function]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256055.png" /> is associated the transition function
+
In order to describe the properties of $  {\mathcal E} $
 +
it is convenient to invoke $  h $-
 +
processes in the sense of Doob: to each [[Excessive function|excessive function]] $  h $
 +
is associated the transition function
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256056.png" /></td> </tr></table>
+
$$
 +
P  ^ {h} ( t , x , B )  = \
 +
h  ^ {-} 1 ( x) \int\limits _ { E }
 +
h ( y) P ( t , x , d y )
 +
$$
  
on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256057.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256058.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256059.png" />; the corresponding Markov process is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256060.png" />-process. All <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256061.png" />-processes can be realized, together with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256062.png" />, on the space of elementary events, so that they are distinguished only by the families of measures <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256063.png" />. One constructs in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256064.png" /> a modification of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256065.png" />, a left-continuous process <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256066.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256067.png" />) for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256068.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256069.png" />. In the topology of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256070.png" /> the limit <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256071.png" /> exists almost certainly.
+
on $  ( E  ^ {h} , {\mathcal B}  ^ {h} ) $,  
 +
where $  E  ^ {h} = \{ {x \in E } : {0 < h ( x) < \infty } \} $
 +
and $  {\mathcal B}  ^ {h} = \{ {A \in B } : {A \subset  E  ^ {h} } \} $;  
 +
the corresponding Markov process is an $  h $-
 +
process. All $  h $-
 +
processes can be realized, together with $  X $,  
 +
on the space of elementary events, so that they are distinguished only by the families of measures $  \{ {\mathsf P} _ {x}  ^ {h} \} $.  
 +
One constructs in $  {\mathcal E} $
 +
a modification of $  x _ {t} $,  
 +
a left-continuous process $  z _ {t} $(
 +
0 < t \leq  \zeta $)  
 +
for which $  {\mathsf P} _ {x}  ^ {h} \{ z _ {t} \neq i ( x _ {t} ) \} \equiv 0 $
 +
if $  h \in L _ {1} ( \gamma ) $.  
 +
In the topology of $  {\mathcal E} $
 +
the limit $  z _  \zeta  = \lim\limits _ {t \uparrow \zeta }  z _ {t} $
 +
exists almost certainly.
  
There is a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256072.png" /> (the  "exit space" ) such that: first, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256073.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256074.png" /> of the above form; secondly, the measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256075.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256076.png" /> has a density <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256077.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256078.png" />, where one can take for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256079.png" /> an excessive function whose spectral measure is the unit measure concentrated at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256080.png" />; and thirdly, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256081.png" /> admits a unique integral decomposition of the form
+
There is a set $  U \subset  {\mathcal E} $(
 +
the  "exit space" ) such that: first, $  {\mathsf P} _ {x}  ^ {h} \{ z _  \zeta  \in U \} \equiv 1 $
 +
for all $  h ( x) $
 +
of the above form; secondly, the measure $  K _ {y}  ^  \alpha  $
 +
for $  y \in U $
 +
has a density $  k _ {y}  ^  \alpha  ( \cdot ) $
 +
with respect to m $,  
 +
where one can take for $  k _ {y}  ^ {0} ( \cdot ) $
 +
an excessive function whose spectral measure is the unit measure concentrated at $  y $;  
 +
and thirdly, $  h ( x) $
 +
admits a unique integral decomposition of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256082.png" /></td> </tr></table>
+
$$
 +
h ( x)  = \int\limits _ { U } k _ {y}  ^ {0} ( x) \mu ( d x ) .
 +
$$
  
The measure <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256083.png" /> in the decomposition is called the spectral measure of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256084.png" />; it is given by the formula
+
The measure $  \mu $
 +
in the decomposition is called the spectral measure of the function $  h $;  
 +
it is given by the formula
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256085.png" /></td> </tr></table>
+
$$
 +
\mu ( B)  = \int\limits _ { E }
 +
h ( x) {\mathsf P} _ {x}  ^ {h}
 +
\{ z _  \zeta  \in B \}
 +
\gamma ( d x ) ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256086.png" /> is a Borel set in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256087.png" />.
+
where $  B $
 +
is a Borel set in $  {\mathcal E} $.
  
 
In the theory of Markov processes other types of compactifications are also used, particularly those in which any function of the form
 
In the theory of Markov processes other types of compactifications are also used, particularly those in which any function of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256088.png" /></td> </tr></table>
+
$$
 +
\int\limits _ { 0 } ^  \infty 
 +
e ^ {- \alpha t } \
 +
d t \int\limits _ { E }
 +
f ( y) P ( t , x , d y ) ,\ \
 +
\alpha > 0 ,\  x \in E ,
 +
$$
  
has a continuous extension for a sufficiently general set of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256089.png" />.
+
has a continuous extension for a sufficiently general set of functions $  f $.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R.S. Martin,  "Minimal positive harmonic functions"  ''Trans. Amer. Math. Soc.'' , '''49'''  (1941)  pp. 137–172</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M. Motoo,  "Application of additive functionals to the boundary problem of Markov processes. Lévy's system of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256090.png" />-processes" , ''Proc. 5-th Berkeley Symp. Math. Stat. Probab.'' , '''2''' :  2  (1967)  pp. 75–110</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  H. Kunita,  T. Watanabe,  "Some theorems concerning resolvents over locally compact spaces" , ''Proc. 5-th Berkeley Symp. Math. Stat. Probab.'' , '''2''' :  2  (1967)  pp. 131–164</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  J.L. Doob,  "Discrete potential theory and boundaries"  ''J. Math. and Mech.'' , '''8''' :  3  (1959)  pp. 433–458; 993</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  T. Watanabe,  "On the theory of Martin boundaries induced by countable Markov processes"  ''Mem. Coll. Sci. Kyoto Univ. Ser. A'' , '''33''' :  1  (1960)  pp. 39–108</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  G.A. Hunt,  "Markov chains and Markov boundaries"  ''Illinois J. Math.'' , '''4'''  (1960)  pp. 313–340</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  P.L. Hennequin,  A. Tortrat,  "Théorie des probabilites et quelques applications" , Masson  (1965)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  H. Kunita,  T. Watanabe,  "Markov processes and Martin boundaries I"  ''Illinois J. Math.'' , '''9''' :  3  (1965)  pp. 485–526</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  M.G. Shur,  ''Trudy Moskov. Inst. Elektron. Mashinostr.'' , '''5'''  (1970)  pp. 192–251</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  T. Jeulin,  "Compactification de Martin d'un processus droit"  ''Z. Wahrsch. Verw. Gebiete'' , '''42''' :  3  (1978)  pp. 229–260</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top">  E.B. Dynkin,  "Boundary theory of Markov processes (the discrete case)"  ''Russian Math. Surveys'' , '''24''' :  2  (1969)  pp. 1–42  ''Uspekhi Mat. Nauk'' , '''24''' :  4  (1969)  pp. 89–152</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  R.S. Martin,  "Minimal positive harmonic functions"  ''Trans. Amer. Math. Soc.'' , '''49'''  (1941)  pp. 137–172</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  M. Motoo,  "Application of additive functionals to the boundary problem of Markov processes. Lévy's system of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062560/m06256090.png" />-processes" , ''Proc. 5-th Berkeley Symp. Math. Stat. Probab.'' , '''2''' :  2  (1967)  pp. 75–110</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  H. Kunita,  T. Watanabe,  "Some theorems concerning resolvents over locally compact spaces" , ''Proc. 5-th Berkeley Symp. Math. Stat. Probab.'' , '''2''' :  2  (1967)  pp. 131–164</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  J.L. Doob,  "Discrete potential theory and boundaries"  ''J. Math. and Mech.'' , '''8''' :  3  (1959)  pp. 433–458; 993</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  T. Watanabe,  "On the theory of Martin boundaries induced by countable Markov processes"  ''Mem. Coll. Sci. Kyoto Univ. Ser. A'' , '''33''' :  1  (1960)  pp. 39–108</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  G.A. Hunt,  "Markov chains and Markov boundaries"  ''Illinois J. Math.'' , '''4'''  (1960)  pp. 313–340</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  P.L. Hennequin,  A. Tortrat,  "Théorie des probabilites et quelques applications" , Masson  (1965)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  H. Kunita,  T. Watanabe,  "Markov processes and Martin boundaries I"  ''Illinois J. Math.'' , '''9''' :  3  (1965)  pp. 485–526</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  M.G. Shur,  ''Trudy Moskov. Inst. Elektron. Mashinostr.'' , '''5'''  (1970)  pp. 192–251</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  T. Jeulin,  "Compactification de Martin d'un processus droit"  ''Z. Wahrsch. Verw. Gebiete'' , '''42''' :  3  (1978)  pp. 229–260</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top">  E.B. Dynkin,  "Boundary theory of Markov processes (the discrete case)"  ''Russian Math. Surveys'' , '''24''' :  2  (1969)  pp. 1–42  ''Uspekhi Mat. Nauk'' , '''24''' :  4  (1969)  pp. 89–152</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Latest revision as of 07:59, 6 June 2020


The boundary of the state space of a Markov process or of its image in some compact space, constructed by a scheme similar to the Martin scheme (see [1]).

A probabilistic interpretation of Martin's construction was first proposed by J.L. Doob (see [4]), who discussed the case of discrete Markov chains.

Let $ P ( t , x , B ) $ be the transition function of a homogeneous Markov process $ X = ( x _ {t} , \zeta , F _ {t} , {\mathsf P} _ {x} ) $, given on a separable, locally compact space $ E $, where $ t \geq 0 $, $ x \in E $, $ B \in {\mathcal B} $, and $ {\mathcal B} $ is the family of Borel sets in $ E $. A function $ g _ \alpha ( x , y ) \geq 0 $ defined for $ \alpha \geq 0 $, $ x \in E $, $ y \in E $, which is $ ( {\mathcal B} \times {\mathcal B} ) $- measurable for fixed $ \alpha $ is called a Green's function if for each $ B \in {\mathcal B} $,

$$ \int\limits _ { B } g _ \alpha ( x , y ) m ( d y ) \equiv \ \int\limits _ { 0 } ^ \infty e ^ {- \alpha t } P ( t , x , B ) d t , $$

where $ m $ is a measure on $ {\mathcal B} $. To avoid ambiguity in the definition of a Green's function, it can be required in addition that for any continuous function $ f ( x) $ with compact support, the function

$$ g _ \alpha ( \cdot ) = \ \int\limits _ { E } f ( x) g _ \alpha ( x , \cdot ) m ( d x ) $$

is $ \Lambda $- continuous (meaning that there exists a function $ F ( t , \omega ) $ which is left continuous in $ t $ and such that

$$ {\mathsf P} _ {x} \{ F ( t , \omega ) \neq g _ \alpha ( x _ {t} ( \omega ) ) \} \equiv 0 ,\ \ x \in E ,\ t > 0 \textrm{ ) } . $$

Fixing a measure $ \gamma $ in $ {\mathcal B} $ and postulating the existence of a Green's function, one defines the Martin kernel

$$ K _ {y} ^ \alpha ( x) = \ \frac{g _ \alpha ( x , y ) }{q ( y ) } , $$

where

$$ q ( y) = \int\limits _ { E } g _ \alpha ( x , y ) \gamma ( d x ) $$

(here some restrictions must be introduced to ensure, in particular, the positivity and $ \Lambda $- continuity of $ q ( y) $). If $ \gamma $ is the unit measure concentrated at some point and $ X $ is a Wiener process terminating at the first exit time for some domain, then the definition of $ K _ {y} ^ {0} ( x) $ reduces to an analogous form [1]. Under broad conditions one can establish the existence of a compact set $ {\mathcal E} $( the "Martin compactum" ), a measure $ K _ {y} ^ \alpha ( d x ) $ on $ {\mathcal B} $( $ \alpha \geq 0 $, $ y \in {\mathcal E} $) and a mapping $ i : E \rightarrow {\mathcal E} $ for which: a) $ i ( E) $ is dense in $ {\mathcal E} $; b) the function

$$ K _ {y} ^ \alpha ( f ) = \ \int\limits _ {\mathcal B} f ( x) K _ {y} ^ \alpha ( d x ) $$

separates points and is continuous on $ {\mathcal E} $ as $ f $ runs through all continuous function in $ E $ with compact support; and c) the measure $ K _ {i ( y) } ^ \alpha ( d x ) $ coincides with $ K _ {y} ^ \alpha ( x) m ( d x ) $ if $ y \in E $. The boundary of the set $ i ( E) $ in $ {\mathcal E} $ is called the Martin boundary or exit-boundary (in the study of decompositions of excessive measures the dual object, the entrance-boundary, arises; see [3], [4]).

In order to describe the properties of $ {\mathcal E} $ it is convenient to invoke $ h $- processes in the sense of Doob: to each excessive function $ h $ is associated the transition function

$$ P ^ {h} ( t , x , B ) = \ h ^ {-} 1 ( x) \int\limits _ { E } h ( y) P ( t , x , d y ) $$

on $ ( E ^ {h} , {\mathcal B} ^ {h} ) $, where $ E ^ {h} = \{ {x \in E } : {0 < h ( x) < \infty } \} $ and $ {\mathcal B} ^ {h} = \{ {A \in B } : {A \subset E ^ {h} } \} $; the corresponding Markov process is an $ h $- process. All $ h $- processes can be realized, together with $ X $, on the space of elementary events, so that they are distinguished only by the families of measures $ \{ {\mathsf P} _ {x} ^ {h} \} $. One constructs in $ {\mathcal E} $ a modification of $ x _ {t} $, a left-continuous process $ z _ {t} $( $ 0 < t \leq \zeta $) for which $ {\mathsf P} _ {x} ^ {h} \{ z _ {t} \neq i ( x _ {t} ) \} \equiv 0 $ if $ h \in L _ {1} ( \gamma ) $. In the topology of $ {\mathcal E} $ the limit $ z _ \zeta = \lim\limits _ {t \uparrow \zeta } z _ {t} $ exists almost certainly.

There is a set $ U \subset {\mathcal E} $( the "exit space" ) such that: first, $ {\mathsf P} _ {x} ^ {h} \{ z _ \zeta \in U \} \equiv 1 $ for all $ h ( x) $ of the above form; secondly, the measure $ K _ {y} ^ \alpha $ for $ y \in U $ has a density $ k _ {y} ^ \alpha ( \cdot ) $ with respect to $ m $, where one can take for $ k _ {y} ^ {0} ( \cdot ) $ an excessive function whose spectral measure is the unit measure concentrated at $ y $; and thirdly, $ h ( x) $ admits a unique integral decomposition of the form

$$ h ( x) = \int\limits _ { U } k _ {y} ^ {0} ( x) \mu ( d x ) . $$

The measure $ \mu $ in the decomposition is called the spectral measure of the function $ h $; it is given by the formula

$$ \mu ( B) = \int\limits _ { E } h ( x) {\mathsf P} _ {x} ^ {h} \{ z _ \zeta \in B \} \gamma ( d x ) , $$

where $ B $ is a Borel set in $ {\mathcal E} $.

In the theory of Markov processes other types of compactifications are also used, particularly those in which any function of the form

$$ \int\limits _ { 0 } ^ \infty e ^ {- \alpha t } \ d t \int\limits _ { E } f ( y) P ( t , x , d y ) ,\ \ \alpha > 0 ,\ x \in E , $$

has a continuous extension for a sufficiently general set of functions $ f $.

References

[1] R.S. Martin, "Minimal positive harmonic functions" Trans. Amer. Math. Soc. , 49 (1941) pp. 137–172
[2] M. Motoo, "Application of additive functionals to the boundary problem of Markov processes. Lévy's system of -processes" , Proc. 5-th Berkeley Symp. Math. Stat. Probab. , 2 : 2 (1967) pp. 75–110
[3] H. Kunita, T. Watanabe, "Some theorems concerning resolvents over locally compact spaces" , Proc. 5-th Berkeley Symp. Math. Stat. Probab. , 2 : 2 (1967) pp. 131–164
[4] J.L. Doob, "Discrete potential theory and boundaries" J. Math. and Mech. , 8 : 3 (1959) pp. 433–458; 993
[5] T. Watanabe, "On the theory of Martin boundaries induced by countable Markov processes" Mem. Coll. Sci. Kyoto Univ. Ser. A , 33 : 1 (1960) pp. 39–108
[6] G.A. Hunt, "Markov chains and Markov boundaries" Illinois J. Math. , 4 (1960) pp. 313–340
[7] P.L. Hennequin, A. Tortrat, "Théorie des probabilites et quelques applications" , Masson (1965)
[8] H. Kunita, T. Watanabe, "Markov processes and Martin boundaries I" Illinois J. Math. , 9 : 3 (1965) pp. 485–526
[9] M.G. Shur, Trudy Moskov. Inst. Elektron. Mashinostr. , 5 (1970) pp. 192–251
[10] T. Jeulin, "Compactification de Martin d'un processus droit" Z. Wahrsch. Verw. Gebiete , 42 : 3 (1978) pp. 229–260
[11] E.B. Dynkin, "Boundary theory of Markov processes (the discrete case)" Russian Math. Surveys , 24 : 2 (1969) pp. 1–42 Uspekhi Mat. Nauk , 24 : 4 (1969) pp. 89–152

Comments

One of the other types of compactifications used in the theory of Markov processes is the Ray–Knight compactification.

References

[a1] J.L. Doob, "Classical potential theory and its probabilistic counterpart" , Springer (1984)
How to Cite This Entry:
Martin boundary in the theory of Markov processes. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Martin_boundary_in_the_theory_of_Markov_processes&oldid=47778
This article was adapted from an original article by M.G. Shur (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article