Namespaces
Variants
Actions

Difference between revisions of "Markov process, stationary"

From Encyclopedia of Mathematics
Jump to: navigation, search
(→‎References: Feller: internal link)
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Markov process|Markov process]] which is a [[Stationary stochastic process|stationary stochastic process]]. There is a stationary Markov process associated with a homogeneous Markov [[Transition function|transition function]] if and only if there is a stationary initial distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m0625001.png" /> corresponding to this function, that is, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m0625002.png" /> satisfies
+
<!--
 +
m0625001.png
 +
$#A+1 = 29 n = 0
 +
$#C+1 = 29 : ~/encyclopedia/old_files/data/M062/M.0602500 Markov process, stationary
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m0625003.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
If the phase space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m0625004.png" /> is finite, then a stationary initial distribution always exists, independent of whether the process has discrete <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m0625005.png" /> or continuous time. For a process in discrete time and for a countable set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m0625006.png" />, a condition for existence of a stationary distribution has been found by A.N. Kolmogorov [[#References|[1]]]: It is necessary and sufficient that there is class of communicating states <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m0625007.png" /> such that the mathematical expectation of the time for reaching <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m0625008.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m0625009.png" /> is finite for any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250010.png" />. This criterion has been generalized to strong Markov processes with an arbitrary phase space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250011.png" />: For the existence of a stationary process it is sufficient that there is a compact set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250012.png" /> such that the expectation of the time of reaching <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250013.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250014.png" /> is finite for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250015.png" />. There is the following sufficient condition for the existence of a stationary Markov process in terms of Lyapunov stochastic functions (cf. [[Lyapunov stochastic function|Lyapunov stochastic function]]): If there is a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250016.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250017.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250018.png" />, then there is a stationary Markov process associated with the Markov transition function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250019.png" />. Here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250020.png" /> is the infinitesimal generator of the process.
+
A [[Markov process|Markov process]] which is a [[Stationary stochastic process|stationary stochastic process]]. There is a stationary Markov process associated with a homogeneous Markov [[Transition function|transition function]] if and only if there is a stationary initial distribution 
 +
corresponding to this function, that is  \mu ( A)
 +
satisfies
  
When the stationary initial distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250021.png" /> is unique, the corresponding stationary process is ergodic. In this case the Cesàro mean of the transition probabilities converges weakly to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250022.png" />. Under certain additional conditions,
+
$$
 +
\mu ( A)  = \int\limits _ { X } P ( x , t , A ) \mu ( d x ) .
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250023.png" /></td> </tr></table>
+
If the phase space    X
 +
is finite, then a stationary initial distribution always exists, independent of whether the process has discrete  $  ( t= 0 , 1 ,\dots) $
 +
or continuous time. For a process in discrete time and for a countable set    X ,
 +
a condition for existence of a stationary distribution has been found by A.N. Kolmogorov [[#References|[1]]]: It is necessary and sufficient that there is class of communicating states    Y \subset  X
 +
such that the mathematical expectation of the time for reaching    y _ {2} \in Y
 +
from    y _ {1} \in Y
 +
is finite for any    y _ {1} \in Y .
 +
This criterion has been generalized to strong Markov processes with an arbitrary phase space    X :  
 +
For the existence of a stationary process it is sufficient that there is a compact set    K \subset  X
 +
such that the expectation of the time of reaching    K
 +
from    x
 +
is finite for all    x \in X .
 +
There is the following sufficient condition for the existence of a stationary Markov process in terms of Lyapunov stochastic functions (cf. [[Lyapunov stochastic function|Lyapunov stochastic function]]): If there is a function  $  V ( x) \leq  0 $
 +
for which    L V ( x) \leq  - 1
 +
for    x \notin K ,
 +
then there is a stationary Markov process associated with the Markov transition function    P ( x , t , A ) .  
 +
Here    L
 +
is the infinitesimal generator of the process.
  
A stationary initial distribution satisfies the Fokker–Planck(–Kolmogorov) equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250024.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250025.png" /> is the adjoint operator to the infinitesimal operator of the process. For example, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250026.png" /> is the adjoint operator to the generating differential operator of the process for diffusion processes. In this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250027.png" /> has a density <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250028.png" /> with respect to the Lebesgue measure which satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062500/m06250029.png" />. In the one-dimensional case this equation can be solved by quadrature.
+
When the stationary initial distribution    \mu
 +
is unique, the corresponding stationary process is ergodic. In this case the Cesàro mean of the transition probabilities converges weakly to    \mu .
 +
Under certain additional conditions,
 +
 
 +
$$
 +
\lim\limits _ {t \rightarrow \infty }  P ( x , t , A )  = \
 +
\mu ( A) \  ( \textrm{ weakly } ) .
 +
$$
 +
 
 +
A stationary initial distribution satisfies the Fokker–Planck(–Kolmogorov) equation $  L  ^ {*} \mu = 0 $,  
 +
where   L  ^ {*}
 +
is the adjoint operator to the infinitesimal operator of the process. For example,   L  ^ {*}
 +
is the adjoint operator to the generating differential operator of the process for diffusion processes. In this case   \mu
 +
has a density   p
 +
with respect to the Lebesgue measure which satisfies $  L  ^ {*} p = 0 $.  
 +
In the one-dimensional case this equation can be solved by quadrature.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.N. Kolmogorov,  "Markov chains with a countable number of states" , Moscow  (1937)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.L. Doob,  "Stochastic processes" , Wiley  (1953)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.B. Sevast'yanov,  "An ergodic theorem for Markov processes and its application to telephone systems with refusals"  ''Theor. Probab. Appl.'' , '''2'''  (1957)  pp. 104–112  ''Teor. Veroyatnost. i Primenen.'' , '''2''' :  1  (1957)  pp. 106–116</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A.N. Kolmogorov,  "Markov chains with a countable number of states" , Moscow  (1937)  (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.L. Doob,  "Stochastic processes" , Wiley  (1953)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.B. Sevast'yanov,  "An ergodic theorem for Markov processes and its application to telephone systems with refusals"  ''Theor. Probab. Appl.'' , '''2'''  (1957)  pp. 104–112  ''Teor. Veroyatnost. i Primenen.'' , '''2''' :  1  (1957)  pp. 106–116</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K.L. Chung, "Markov chains with stationary transition probabilities", Springer (1960)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Feller, [[Feller, "An introduction to probability theory and its  applications"|"An introduction to probability theory and its  applications"]], '''1–2''', Wiley (1966)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Lévy, "Processus stochastiques et mouvement Brownien", Gauthier-Villars (1965)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E. Parzen, "Stochastic processes", Holden-Day (1962)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> Yu.A. Rozanov, "Stationary random processes", Holden-Day (1967) (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> K.L. Chung, "Markov chains with stationary transition probabilities", Springer (1960)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> W. Feller, [[Feller, "An introduction to probability theory and its  applications"|"An introduction to probability theory and its  applications"]], '''1–2''', Wiley (1966)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> P. Lévy, "Processus stochastiques et mouvement Brownien", Gauthier-Villars (1965)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> E. Parzen, "Stochastic processes", Holden-Day (1962)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> Yu.A. Rozanov, "Stationary random processes", Holden-Day (1967) (Translated from Russian)</TD></TR></table>

Latest revision as of 07:59, 6 June 2020


A Markov process which is a stationary stochastic process. There is a stationary Markov process associated with a homogeneous Markov transition function if and only if there is a stationary initial distribution \mu ( A) corresponding to this function, that is, \mu ( A) satisfies

\mu ( A) = \int\limits _ { X } P ( x , t , A ) \mu ( d x ) .

If the phase space X is finite, then a stationary initial distribution always exists, independent of whether the process has discrete ( t= 0 , 1 ,\dots) or continuous time. For a process in discrete time and for a countable set X , a condition for existence of a stationary distribution has been found by A.N. Kolmogorov [1]: It is necessary and sufficient that there is class of communicating states Y \subset X such that the mathematical expectation of the time for reaching y _ {2} \in Y from y _ {1} \in Y is finite for any y _ {1} \in Y . This criterion has been generalized to strong Markov processes with an arbitrary phase space X : For the existence of a stationary process it is sufficient that there is a compact set K \subset X such that the expectation of the time of reaching K from x is finite for all x \in X . There is the following sufficient condition for the existence of a stationary Markov process in terms of Lyapunov stochastic functions (cf. Lyapunov stochastic function): If there is a function V ( x) \leq 0 for which L V ( x) \leq - 1 for x \notin K , then there is a stationary Markov process associated with the Markov transition function P ( x , t , A ) . Here L is the infinitesimal generator of the process.

When the stationary initial distribution \mu is unique, the corresponding stationary process is ergodic. In this case the Cesàro mean of the transition probabilities converges weakly to \mu . Under certain additional conditions,

\lim\limits _ {t \rightarrow \infty } P ( x , t , A ) = \ \mu ( A) \ ( \textrm{ weakly } ) .

A stationary initial distribution satisfies the Fokker–Planck(–Kolmogorov) equation L ^ {*} \mu = 0 , where L ^ {*} is the adjoint operator to the infinitesimal operator of the process. For example, L ^ {*} is the adjoint operator to the generating differential operator of the process for diffusion processes. In this case \mu has a density p with respect to the Lebesgue measure which satisfies L ^ {*} p = 0 . In the one-dimensional case this equation can be solved by quadrature.

References

[1] A.N. Kolmogorov, "Markov chains with a countable number of states" , Moscow (1937) (In Russian)
[2] J.L. Doob, "Stochastic processes" , Wiley (1953)
[3] A.B. Sevast'yanov, "An ergodic theorem for Markov processes and its application to telephone systems with refusals" Theor. Probab. Appl. , 2 (1957) pp. 104–112 Teor. Veroyatnost. i Primenen. , 2 : 1 (1957) pp. 106–116

Comments

References

[a1] K.L. Chung, "Markov chains with stationary transition probabilities", Springer (1960)
[a2] W. Feller, "An introduction to probability theory and its applications", 1–2, Wiley (1966)
[a3] P. Lévy, "Processus stochastiques et mouvement Brownien", Gauthier-Villars (1965)
[a4] E. Parzen, "Stochastic processes", Holden-Day (1962)
[a5] Yu.A. Rozanov, "Stationary random processes", Holden-Day (1967) (Translated from Russian)
How to Cite This Entry:
Markov process, stationary. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Markov_process,_stationary&oldid=47774
This article was adapted from an original article by R.Z. Khas'minskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article