Difference between revisions of "Markov criterion"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | m0624401.png | ||
| + | $#A+1 = 26 n = 0 | ||
| + | $#C+1 = 26 : ~/encyclopedia/old_files/data/M062/M.0602440 Markov criterion | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
''for best integral approximation'' | ''for best integral approximation'' | ||
| − | A theorem which in some cases enables one to give effectively the polynomial and the error of best integral approximation of a function | + | A theorem which in some cases enables one to give effectively the polynomial and the error of best integral approximation of a function $ f $. |
| + | It was established by A.A. Markov in 1898 (see [[#References|[1]]]). Let $ \{ \phi _ {k} ( x) \} $, | ||
| + | $ k = 1 \dots n $, | ||
| + | be a system of linearly independent functions continuous on the interval $ [ a , b ] $, | ||
| + | and let the continuous function $ \psi $ | ||
| + | change sign at the points $ x _ {1} < \dots < x _ {r} $ | ||
| + | in $ ( a , b ) $ | ||
| + | and be such that | ||
| − | + | $$ | |
| + | \int\limits _ { a } ^ { b } | ||
| + | \phi _ {k} ( x) \mathop{\rm sgn} \psi ( x) d x = 0 ,\ \ | ||
| + | k = 1 \dots n . | ||
| + | $$ | ||
If the polynomial | If the polynomial | ||
| − | + | $$ | |
| + | P _ {n} ^ {*} ( x) = \ | ||
| + | \sum _ { k= } 1 ^ { n } | ||
| + | c _ {k} ^ {*} \phi _ {k} ( x) | ||
| + | $$ | ||
| − | has the property that the difference | + | has the property that the difference $ f - P _ {n} ^ {*} $ |
| + | changes sign at the points $ x _ {1} \dots x _ {r} $, | ||
| + | and only at those points, then $ P _ {n} ^ {*} $ | ||
| + | is the polynomial of best integral approximation to $ f $ | ||
| + | and | ||
| − | + | $$ | |
| + | \inf _ {\{ c _ {k} \} } \ | ||
| + | \int\limits _ { a } ^ { b } \left | | ||
| + | f ( x) - | ||
| + | \sum _ { k= } 1 ^ { n } c _ {k} \phi _ {k} ( x) \ | ||
| + | \right | d x = | ||
| + | $$ | ||
| − | + | $$ | |
| + | = \ | ||
| + | \int\limits _ { a } ^ { b } \left | f ( x) - P _ {n} ^ {*} ( x) \right | d x | ||
| + | = \left | \int\limits _ { a } ^ { b } f ( x) \mathop{\rm sgn} \psi ( x) d x \right | . | ||
| + | $$ | ||
| − | For the system | + | For the system $ \{ 1 , \cos x \dots \cos n x \} $ |
| + | on $ [ 0 , \pi ] $, | ||
| + | $ \psi $ | ||
| + | can be taken to be $ \cos ( n + 1) x $; | ||
| + | for the system $ \{ \sin x \dots \sin n x \} $, | ||
| + | $ 0 \leq x \leq \pi $, | ||
| + | $ \psi $ | ||
| + | can be taken to be $ \sin ( n + 1 ) x $; | ||
| + | and for the system $ \{ 1 , x \dots x ^ {n} \} $, | ||
| + | $ - 1 \leq x \leq 1 $, | ||
| + | one can take $ \psi ( x) = \sin ( ( n + 2 ) \mathop{\rm arc} \cos x ) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.A. Markov, "Selected works" , Moscow-Leningrad (1948) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.K. Daugavet, "Introduction to the theory of approximation of functions" , Leningrad (1977) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.A. Markov, "Selected works" , Moscow-Leningrad (1948) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.K. Daugavet, "Introduction to the theory of approximation of functions" , Leningrad (1977) (In Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.W. Cheney, "Introduction to approximation theory" , Chelsea, reprint (1982)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M.W. Müller, "Approximationstheorie" , Akad. Verlagsgesellschaft (1978)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.R. Rice, "The approximation of functions" , '''1. Linear theory''' , Addison-Wesley (1964)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.W. Cheney, "Introduction to approximation theory" , Chelsea, reprint (1982)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> M.W. Müller, "Approximationstheorie" , Akad. Verlagsgesellschaft (1978)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> J.R. Rice, "The approximation of functions" , '''1. Linear theory''' , Addison-Wesley (1964)</TD></TR></table> | ||
Revision as of 07:59, 6 June 2020
for best integral approximation
A theorem which in some cases enables one to give effectively the polynomial and the error of best integral approximation of a function $ f $. It was established by A.A. Markov in 1898 (see [1]). Let $ \{ \phi _ {k} ( x) \} $, $ k = 1 \dots n $, be a system of linearly independent functions continuous on the interval $ [ a , b ] $, and let the continuous function $ \psi $ change sign at the points $ x _ {1} < \dots < x _ {r} $ in $ ( a , b ) $ and be such that
$$ \int\limits _ { a } ^ { b } \phi _ {k} ( x) \mathop{\rm sgn} \psi ( x) d x = 0 ,\ \ k = 1 \dots n . $$
If the polynomial
$$ P _ {n} ^ {*} ( x) = \ \sum _ { k= } 1 ^ { n } c _ {k} ^ {*} \phi _ {k} ( x) $$
has the property that the difference $ f - P _ {n} ^ {*} $ changes sign at the points $ x _ {1} \dots x _ {r} $, and only at those points, then $ P _ {n} ^ {*} $ is the polynomial of best integral approximation to $ f $ and
$$ \inf _ {\{ c _ {k} \} } \ \int\limits _ { a } ^ { b } \left | f ( x) - \sum _ { k= } 1 ^ { n } c _ {k} \phi _ {k} ( x) \ \right | d x = $$
$$ = \ \int\limits _ { a } ^ { b } \left | f ( x) - P _ {n} ^ {*} ( x) \right | d x = \left | \int\limits _ { a } ^ { b } f ( x) \mathop{\rm sgn} \psi ( x) d x \right | . $$
For the system $ \{ 1 , \cos x \dots \cos n x \} $ on $ [ 0 , \pi ] $, $ \psi $ can be taken to be $ \cos ( n + 1) x $; for the system $ \{ \sin x \dots \sin n x \} $, $ 0 \leq x \leq \pi $, $ \psi $ can be taken to be $ \sin ( n + 1 ) x $; and for the system $ \{ 1 , x \dots x ^ {n} \} $, $ - 1 \leq x \leq 1 $, one can take $ \psi ( x) = \sin ( ( n + 2 ) \mathop{\rm arc} \cos x ) $.
References
| [1] | A.A. Markov, "Selected works" , Moscow-Leningrad (1948) (In Russian) |
| [2] | N.I. [N.I. Akhiezer] Achiezer, "Theory of approximation" , F. Ungar (1956) (Translated from Russian) |
| [3] | I.K. Daugavet, "Introduction to the theory of approximation of functions" , Leningrad (1977) (In Russian) |
Comments
References
| [a1] | E.W. Cheney, "Introduction to approximation theory" , Chelsea, reprint (1982) |
| [a2] | M.W. Müller, "Approximationstheorie" , Akad. Verlagsgesellschaft (1978) |
| [a3] | J.R. Rice, "The approximation of functions" , 1. Linear theory , Addison-Wesley (1964) |
Markov criterion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Markov_criterion&oldid=47770