Namespaces
Variants
Actions

Difference between revisions of "MIC-Kepler problem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
m1101201.png
 +
$#A+1 = 11 n = 0
 +
$#C+1 = 11 : ~/encyclopedia/old_files/data/M110/M.1100120 MIC\AAhKepler problem
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''in classical mechanics''
 
''in classical mechanics''
  
The [[Hamiltonian system|Hamiltonian system]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110120/m1101201.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110120/m1101202.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110120/m1101203.png" />,
+
The [[Hamiltonian system|Hamiltonian system]] $  ( M, \omega _  \mu  ,H _  \mu  ) $,  
 +
where $  M = T  ^ {*} { {\dot{\mathbf R} } }  ^ {3} $,  
 +
$  { {\dot{\mathbf R} } }  ^ {3} = \mathbf R  ^ {3} \setminus  \{ 0 \} $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110120/m1101204.png" /></td> </tr></table>
+
$$
 +
\omega _  \mu  = \sum _ {i = 1 } ^ { 3 }  dp _ {i} \wedge dq _ {i} - {
 +
\frac \mu {2 \left | q \right |  ^ {3} }
 +
} \sum _ {i,j,k = 1 } ^ { 3 }  \epsilon _ {ijk }  q _ {i} dq _ {j} \wedge dq _ {k}  $$
  
 
and
 
and
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110120/m1101205.png" /></td> </tr></table>
+
$$
 +
H _  \mu  = {
 +
\frac{\left | p \right |  ^ {2} }{2}
 +
} - {
 +
\frac \alpha {\left | q \right | }
 +
} + {
 +
\frac{\mu  ^ {2} }{2 \left | q \right |  ^ {2} }
 +
} ,  \alpha, \mu \in \mathbf R,  \alpha > 0,
 +
$$
  
which can be considered as a one-parameter deformation family of the standard Kepler problem <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110120/m1101206.png" /> with the remarkable property that it retains its high dynamical symmetries. Physically, the deformation parameter <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110120/m1101207.png" /> is interpreted as the magnetic charge of the particle at rest and measures the pitch of the cone on which trajectories lie. Its genuine mathematical interpretation is as a [[Cohomology|cohomology]] class of the symplectic structure. The global symmetry group of the problem is either <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110120/m1101208.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110120/m1101209.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110120/m11012010.png" />, depending on whether the energy is negative, zero or positive. The motion satisfies Kepler's three laws (cf. [[Kepler equation|Kepler equation]]).
+
which can be considered as a one-parameter deformation family of the standard Kepler problem $  ( M, \omega _ {0} ,H _ {0} ) $
 +
with the remarkable property that it retains its high dynamical symmetries. Physically, the deformation parameter $  \mu $
 +
is interpreted as the magnetic charge of the particle at rest and measures the pitch of the cone on which trajectories lie. Its genuine mathematical interpretation is as a [[Cohomology|cohomology]] class of the symplectic structure. The global symmetry group of the problem is either $  { \mathop{\rm SO} } ( 4 ) $,  
 +
$  E ( 3 ) $
 +
or $  { \mathop{\rm SO} } ( 3,1 ) $,  
 +
depending on whether the energy is negative, zero or positive. The motion satisfies Kepler's three laws (cf. [[Kepler equation|Kepler equation]]).
  
The Hilbert spaces associated with the quantized problem carry almost all unitary irreducible representations of the respective covering groups, the only exception being the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m110/m110120/m11012011.png" />, for which only the [[Principal series|principal series]] representations arise. All this allows one to derive the spectrum and multiplicities of the bound states, as well differential cross sections of the scattering process and quantizations of the magnetic charge.
+
The Hilbert spaces associated with the quantized problem carry almost all unitary irreducible representations of the respective covering groups, the only exception being the group $  { \mathop{\rm SL} } ( 2, \mathbf C ) $,
 +
for which only the [[Principal series|principal series]] representations arise. All this allows one to derive the spectrum and multiplicities of the bound states, as well differential cross sections of the scattering process and quantizations of the magnetic charge.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H. McIntosh,  A. Cisneros,  "Degeneracy in the presence of magnetic monopole"  ''J. Math. Phys.'' , '''11'''  (1970)  pp. 896–916</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  I. Mladenov,  V. Tsanov,  "Geometric quantization of the MIC-Kepler problem"  ''J. Phys. A: Math. Gen.'' , '''20'''  (1987)  pp. 5865–5871</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I. Mladenov,  "Scattering of charged particles off dyons"  ''J. Physics A Math. and Gen.'' , '''21'''  (1988)  pp. L1–L4</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  H. McIntosh,  A. Cisneros,  "Degeneracy in the presence of magnetic monopole"  ''J. Math. Phys.'' , '''11'''  (1970)  pp. 896–916</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  I. Mladenov,  V. Tsanov,  "Geometric quantization of the MIC-Kepler problem"  ''J. Phys. A: Math. Gen.'' , '''20'''  (1987)  pp. 5865–5871</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  I. Mladenov,  "Scattering of charged particles off dyons"  ''J. Physics A Math. and Gen.'' , '''21'''  (1988)  pp. L1–L4</TD></TR></table>

Latest revision as of 04:11, 6 June 2020


in classical mechanics

The Hamiltonian system $ ( M, \omega _ \mu ,H _ \mu ) $, where $ M = T ^ {*} { {\dot{\mathbf R} } } ^ {3} $, $ { {\dot{\mathbf R} } } ^ {3} = \mathbf R ^ {3} \setminus \{ 0 \} $,

$$ \omega _ \mu = \sum _ {i = 1 } ^ { 3 } dp _ {i} \wedge dq _ {i} - { \frac \mu {2 \left | q \right | ^ {3} } } \sum _ {i,j,k = 1 } ^ { 3 } \epsilon _ {ijk } q _ {i} dq _ {j} \wedge dq _ {k} $$

and

$$ H _ \mu = { \frac{\left | p \right | ^ {2} }{2} } - { \frac \alpha {\left | q \right | } } + { \frac{\mu ^ {2} }{2 \left | q \right | ^ {2} } } , \alpha, \mu \in \mathbf R, \alpha > 0, $$

which can be considered as a one-parameter deformation family of the standard Kepler problem $ ( M, \omega _ {0} ,H _ {0} ) $ with the remarkable property that it retains its high dynamical symmetries. Physically, the deformation parameter $ \mu $ is interpreted as the magnetic charge of the particle at rest and measures the pitch of the cone on which trajectories lie. Its genuine mathematical interpretation is as a cohomology class of the symplectic structure. The global symmetry group of the problem is either $ { \mathop{\rm SO} } ( 4 ) $, $ E ( 3 ) $ or $ { \mathop{\rm SO} } ( 3,1 ) $, depending on whether the energy is negative, zero or positive. The motion satisfies Kepler's three laws (cf. Kepler equation).

The Hilbert spaces associated with the quantized problem carry almost all unitary irreducible representations of the respective covering groups, the only exception being the group $ { \mathop{\rm SL} } ( 2, \mathbf C ) $, for which only the principal series representations arise. All this allows one to derive the spectrum and multiplicities of the bound states, as well differential cross sections of the scattering process and quantizations of the magnetic charge.

References

[a1] H. McIntosh, A. Cisneros, "Degeneracy in the presence of magnetic monopole" J. Math. Phys. , 11 (1970) pp. 896–916
[a2] I. Mladenov, V. Tsanov, "Geometric quantization of the MIC-Kepler problem" J. Phys. A: Math. Gen. , 20 (1987) pp. 5865–5871
[a3] I. Mladenov, "Scattering of charged particles off dyons" J. Physics A Math. and Gen. , 21 (1988) pp. L1–L4
How to Cite This Entry:
MIC-Kepler problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=MIC-Kepler_problem&oldid=47741
This article was adapted from an original article by I.M. Mladenov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article