|
|
Line 1: |
Line 1: |
− | A [[Sheaf|sheaf]] of modules that is locally isomorphic to the direct sum of several copies of the structure sheaf. More precisely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l0604501.png" /> be a [[Ringed space|ringed space]]. A sheaf of modules <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l0604502.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l0604503.png" /> is said to be locally free if for every point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l0604504.png" /> there is an open neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l0604505.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l0604506.png" />, such that the restriction <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l0604507.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l0604508.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l0604509.png" /> is a free sheaf of modules over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045010.png" />, that is, it is isomorphic to the direct sum of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045011.png" /> of copies of the structure sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045012.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045013.png" /> is connected and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045014.png" /> is finite, for example consisting of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045015.png" /> elements, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045016.png" /> does not depend on the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045017.png" /> and is called the rank of the locally free sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045018.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045019.png" /> be a vector bundle of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045020.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045021.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045022.png" /> be the sheaf of germs of its sections. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045023.png" /> is a locally free sheaf of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045024.png" />. Conversely, for every locally free sheaf <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045025.png" /> of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045026.png" /> there is a vector bundle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045027.png" /> of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045028.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045029.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045030.png" /> is the sheaf of germs of its sections (see [[#References|[1]]], [[#References|[2]]]); hence there is a natural one-to-one correspondence between the isomorphy classes of locally free sheaves of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045031.png" /> and the isomorphy classes of vector bundles of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045032.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045033.png" />.
| + | <!-- |
| + | l0604501.png |
| + | $#A+1 = 49 n = 0 |
| + | $#C+1 = 49 : ~/encyclopedia/old_files/data/L060/L.0600450 Locally free sheaf |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Example. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045034.png" /> be a smooth connected algebraic variety of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045035.png" />. Then the sheaf of regular differential forms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045036.png" /> is a locally free sheaf of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045037.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045038.png" />, a connected [[Affine scheme|affine scheme]], be the spectrum of the commutative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045039.png" /> (cf. [[Spectrum of a ring|Spectrum of a ring]]), let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045040.png" /> be a locally free sheaf of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045041.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045042.png" /> be the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045043.png" />-module of its global sections. Then the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045044.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045045.png" /> is projective and the mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045046.png" /> establishes a one-to-one correspondence between the set of classes (up to isomorphisms) of locally free sheaves of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045047.png" /> and the set of classes (up to isomorphisms) of projective <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045048.png" />-modules of rank <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060450/l06045049.png" /> (see [[#References|[2]]]). | + | A [[Sheaf|sheaf]] of modules that is locally isomorphic to the direct sum of several copies of the structure sheaf. More precisely, let $ ( X , {\mathcal O} _ {X} ) $ |
| + | be a [[Ringed space|ringed space]]. A sheaf of modules $ {\mathcal F} $ |
| + | over $ {\mathcal O} _ {X} $ |
| + | is said to be locally free if for every point $ x \in X $ |
| + | there is an open neighbourhood $ U \subset X $, |
| + | $ x \in U $, |
| + | such that the restriction $ {\mathcal F} \mid _ {U} $ |
| + | of $ {\mathcal F} $ |
| + | to $ U $ |
| + | is a free sheaf of modules over $ {\mathcal O} _ {X } \mid _ {U } $, |
| + | that is, it is isomorphic to the direct sum of a set $ I ( x) $ |
| + | of copies of the structure sheaf $ {\mathcal O} _ {X} \mid _ {U } $. |
| + | If $ X $ |
| + | is connected and $ I ( x) $ |
| + | is finite, for example consisting of $ n $ |
| + | elements, then $ n $ |
| + | does not depend on the point $ x $ |
| + | and is called the rank of the locally free sheaf $ {\mathcal F} $. |
| + | Let $ V $ |
| + | be a vector bundle of rank $ n $ |
| + | on $ X $ |
| + | and let $ {\mathcal F} $ |
| + | be the sheaf of germs of its sections. Then $ {\mathcal F} $ |
| + | is a locally free sheaf of rank $ n $. |
| + | Conversely, for every locally free sheaf $ {\mathcal F} $ |
| + | of rank $ n $ |
| + | there is a vector bundle $ V $ |
| + | of rank $ n $ |
| + | on $ X $ |
| + | such that $ {\mathcal F} $ |
| + | is the sheaf of germs of its sections (see [[#References|[1]]], [[#References|[2]]]); hence there is a natural one-to-one correspondence between the isomorphy classes of locally free sheaves of rank $ n $ |
| + | and the isomorphy classes of vector bundles of rank $ n $ |
| + | on $ X $. |
| + | |
| + | Example. Let $ X $ |
| + | be a smooth connected algebraic variety of dimension $ n $. |
| + | Then the sheaf of regular differential forms $ \Omega _ {X} ^ {1} $ |
| + | is a locally free sheaf of rank $ n $. |
| + | |
| + | Let $ X = \mathop{\rm Spec} A $, |
| + | a connected [[Affine scheme|affine scheme]], be the spectrum of the commutative ring $ A $( |
| + | cf. [[Spectrum of a ring|Spectrum of a ring]]), let $ {\mathcal F} $ |
| + | be a locally free sheaf of rank $ n $ |
| + | and let $ M = \Gamma ( X , {\mathcal F} ) $ |
| + | be the $ A $- |
| + | module of its global sections. Then the $ A $- |
| + | module $ M $ |
| + | is projective and the mapping $ {\mathcal F} \mapsto \Gamma ( X , {\mathcal F} ) $ |
| + | establishes a one-to-one correspondence between the set of classes (up to isomorphisms) of locally free sheaves of rank $ n $ |
| + | and the set of classes (up to isomorphisms) of projective $ A $- |
| + | modules of rank $ n $( |
| + | see [[#References|[2]]]). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Godement, "Topologie algébrique et théorie des faisceaux" , Hermann (1958) {{MR|0102797}} {{ZBL|0080.16201}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R. Godement, "Topologie algébrique et théorie des faisceaux" , Hermann (1958) {{MR|0102797}} {{ZBL|0080.16201}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR></table> |
A sheaf of modules that is locally isomorphic to the direct sum of several copies of the structure sheaf. More precisely, let $ ( X , {\mathcal O} _ {X} ) $
be a ringed space. A sheaf of modules $ {\mathcal F} $
over $ {\mathcal O} _ {X} $
is said to be locally free if for every point $ x \in X $
there is an open neighbourhood $ U \subset X $,
$ x \in U $,
such that the restriction $ {\mathcal F} \mid _ {U} $
of $ {\mathcal F} $
to $ U $
is a free sheaf of modules over $ {\mathcal O} _ {X } \mid _ {U } $,
that is, it is isomorphic to the direct sum of a set $ I ( x) $
of copies of the structure sheaf $ {\mathcal O} _ {X} \mid _ {U } $.
If $ X $
is connected and $ I ( x) $
is finite, for example consisting of $ n $
elements, then $ n $
does not depend on the point $ x $
and is called the rank of the locally free sheaf $ {\mathcal F} $.
Let $ V $
be a vector bundle of rank $ n $
on $ X $
and let $ {\mathcal F} $
be the sheaf of germs of its sections. Then $ {\mathcal F} $
is a locally free sheaf of rank $ n $.
Conversely, for every locally free sheaf $ {\mathcal F} $
of rank $ n $
there is a vector bundle $ V $
of rank $ n $
on $ X $
such that $ {\mathcal F} $
is the sheaf of germs of its sections (see [1], [2]); hence there is a natural one-to-one correspondence between the isomorphy classes of locally free sheaves of rank $ n $
and the isomorphy classes of vector bundles of rank $ n $
on $ X $.
Example. Let $ X $
be a smooth connected algebraic variety of dimension $ n $.
Then the sheaf of regular differential forms $ \Omega _ {X} ^ {1} $
is a locally free sheaf of rank $ n $.
Let $ X = \mathop{\rm Spec} A $,
a connected affine scheme, be the spectrum of the commutative ring $ A $(
cf. Spectrum of a ring), let $ {\mathcal F} $
be a locally free sheaf of rank $ n $
and let $ M = \Gamma ( X , {\mathcal F} ) $
be the $ A $-
module of its global sections. Then the $ A $-
module $ M $
is projective and the mapping $ {\mathcal F} \mapsto \Gamma ( X , {\mathcal F} ) $
establishes a one-to-one correspondence between the set of classes (up to isomorphisms) of locally free sheaves of rank $ n $
and the set of classes (up to isomorphisms) of projective $ A $-
modules of rank $ n $(
see [2]).
References