Difference between revisions of "Local homology"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | l0601501.png | ||
+ | $#A+1 = 26 n = 0 | ||
+ | $#C+1 = 26 : ~/encyclopedia/old_files/data/L060/L.0600150 Local homology | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The homology groups (cf. [[Homology group|Homology group]]) | The homology groups (cf. [[Homology group|Homology group]]) | ||
− | + | $$ | |
+ | H _ {p} ^ {x} = H _ {p} ^ {c} ( X , X \setminus x ; G ) , | ||
+ | $$ | ||
− | defined at points | + | defined at points $ x \in X $, |
+ | where $ H _ {p} ^ {c} $ | ||
+ | is [[Homology with compact support|homology with compact support]]. These groups coincide with the direct limits | ||
− | + | $$ | |
+ | \lim\limits _ \rightarrow H _ {p} ^ {c} ( X , X \setminus U ; G ) | ||
+ | $$ | ||
− | over open neighbourhoods | + | over open neighbourhoods $ U $ |
+ | of $ x $, | ||
+ | and for homologically locally connected $ X $ | ||
+ | they also coincide with the inverse limits | ||
− | + | $$ | |
+ | \lim\limits _ \leftarrow H _ {p-} 1 ^ {c} ( U \setminus x ; G ) . | ||
+ | $$ | ||
− | The homological dimension of a finite-dimensional metrizable locally compact space | + | The homological dimension of a finite-dimensional metrizable locally compact space $ X $ |
+ | over $ G $( | ||
+ | cf. [[Homological dimension of a space|Homological dimension of a space]]) coincides with the largest value of $ n $ | ||
+ | for which $ H _ {n} ^ {x} \neq 0 $, | ||
+ | and the set of such points $ x \in X $ | ||
+ | has dimension $ n $. | ||
− | Let | + | Let $ {\mathcal C} _ {*} $ |
+ | be the differential sheaf over $ X $ | ||
+ | defined by associating with each open set $ U \subset X $ | ||
+ | the chain complex $ C _ {*} ( X , X \setminus U ; G ) $. | ||
+ | The groups $ H _ {p} ^ {x} $ | ||
+ | are the fibres of the derived sheaves $ {\mathcal H} _ {p} = H _ {p} ( {\mathcal C} _ {*} ) $. | ||
+ | For generalized manifolds, $ H _ {p} ^ {x} = 0 $ | ||
+ | for $ p \neq n = \mathop{\rm dim} X $. | ||
+ | In this case the homology sequence of the pair $ ( X , A ) $ | ||
+ | with coefficients in $ G $ | ||
+ | coincides with the cohomology of the pair $ ( X , X \setminus A ) $ | ||
+ | with coefficients in the sheaf $ {\mathcal H} _ {n} $( | ||
+ | Poincaré–Lefschetz duality). The similar facts for the local cohomology of locally compact spaces do not hold. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.G. Sklyarenko, "On the theory of generalized manifolds" ''Math. USSR Izv.'' , '''5''' : 4 (1971) pp. 845–858 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''35''' (1971) pp. 831–843</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.E. [A.E. Kharlap] Harlap, "Local homology and cohomology, homology dimension and generalized manifolds" ''Math. USSR Sb.'' , '''25''' : 3 (1975) pp. 323–349 ''Mat. Sb.'' , '''96''' (1975) pp. 347–373</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.G. Sklyarenko, "On the theory of generalized manifolds" ''Math. USSR Izv.'' , '''5''' : 4 (1971) pp. 845–858 ''Izv. Akad. Nauk SSSR Ser. Mat.'' , '''35''' (1971) pp. 831–843</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.E. [A.E. Kharlap] Harlap, "Local homology and cohomology, homology dimension and generalized manifolds" ''Math. USSR Sb.'' , '''25''' : 3 (1975) pp. 323–349 ''Mat. Sb.'' , '''96''' (1975) pp. 347–373</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Dold, "Lectures on algebraic topology" , Springer (1972) pp. Sect. IV.3</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A. Dold, "Lectures on algebraic topology" , Springer (1972) pp. Sect. IV.3</TD></TR></table> |
Latest revision as of 22:17, 5 June 2020
The homology groups (cf. Homology group)
$$ H _ {p} ^ {x} = H _ {p} ^ {c} ( X , X \setminus x ; G ) , $$
defined at points $ x \in X $, where $ H _ {p} ^ {c} $ is homology with compact support. These groups coincide with the direct limits
$$ \lim\limits _ \rightarrow H _ {p} ^ {c} ( X , X \setminus U ; G ) $$
over open neighbourhoods $ U $ of $ x $, and for homologically locally connected $ X $ they also coincide with the inverse limits
$$ \lim\limits _ \leftarrow H _ {p-} 1 ^ {c} ( U \setminus x ; G ) . $$
The homological dimension of a finite-dimensional metrizable locally compact space $ X $ over $ G $( cf. Homological dimension of a space) coincides with the largest value of $ n $ for which $ H _ {n} ^ {x} \neq 0 $, and the set of such points $ x \in X $ has dimension $ n $.
Let $ {\mathcal C} _ {*} $ be the differential sheaf over $ X $ defined by associating with each open set $ U \subset X $ the chain complex $ C _ {*} ( X , X \setminus U ; G ) $. The groups $ H _ {p} ^ {x} $ are the fibres of the derived sheaves $ {\mathcal H} _ {p} = H _ {p} ( {\mathcal C} _ {*} ) $. For generalized manifolds, $ H _ {p} ^ {x} = 0 $ for $ p \neq n = \mathop{\rm dim} X $. In this case the homology sequence of the pair $ ( X , A ) $ with coefficients in $ G $ coincides with the cohomology of the pair $ ( X , X \setminus A ) $ with coefficients in the sheaf $ {\mathcal H} _ {n} $( Poincaré–Lefschetz duality). The similar facts for the local cohomology of locally compact spaces do not hold.
References
[1] | E.G. Sklyarenko, "On the theory of generalized manifolds" Math. USSR Izv. , 5 : 4 (1971) pp. 845–858 Izv. Akad. Nauk SSSR Ser. Mat. , 35 (1971) pp. 831–843 |
[2] | A.E. [A.E. Kharlap] Harlap, "Local homology and cohomology, homology dimension and generalized manifolds" Math. USSR Sb. , 25 : 3 (1975) pp. 323–349 Mat. Sb. , 96 (1975) pp. 347–373 |
Comments
References
[a1] | A. Dold, "Lectures on algebraic topology" , Springer (1972) pp. Sect. IV.3 |
Local homology. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Local_homology&oldid=47681