Difference between revisions of "Linear hypothesis"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l0592801.png | ||
+ | $#A+1 = 36 n = 0 | ||
+ | $#C+1 = 36 : ~/encyclopedia/old_files/data/L059/L.0509280 Linear hypothesis | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | < | + | A statistical hypothesis according to which the mean $ a $ |
+ | of an $ n $- | ||
+ | dimensional normal law $ N _ {n} ( a , \sigma ^ {2} I ) $( | ||
+ | where $ I $ | ||
+ | is the unit matrix), lying in a linear subspace $ \Pi ^ {s} \subset \mathbf R ^ {n} $ | ||
+ | of dimension $ s < n $, | ||
+ | belongs to a linear subspace $ \Pi ^ {r} \subset \Pi ^ {s} $ | ||
+ | of dimension $ r < s $. | ||
+ | |||
+ | Many problems of mathematical statistics can be reduced to the problem of testing a linear hypothesis, which is often stated in the following so-called canonical form. Let $ X = ( X _ {1} \dots X _ {n} ) $ | ||
+ | be a normally distributed vector with independent components and let $ {\mathsf E} X _ {i} = a _ {i} $ | ||
+ | for $ i = 1 \dots s $, | ||
+ | $ {\mathsf E} X _ {i} = 0 $ | ||
+ | for $ i = s + 1 \dots n $ | ||
+ | and $ {\mathsf D} X _ {i} = \sigma ^ {2} $ | ||
+ | for $ i = 1 \dots n $, | ||
+ | where the quantities $ a _ {1} \dots a _ {s} $ | ||
+ | are unknown. Then the hypothesis $ H _ {0} $, | ||
+ | according to which | ||
+ | |||
+ | $$ | ||
+ | a _ {1} = \dots = a _ {r} = 0 ,\ \ | ||
+ | r < s < n , | ||
+ | $$ | ||
is the canonical linear hypothesis. | is the canonical linear hypothesis. | ||
− | Example. Let | + | Example. Let $ Y _ {1} \dots Y _ {n} $ |
+ | and $ Z _ {1} \dots Z _ {m} $ | ||
+ | be $ n + m $ | ||
+ | independent random variables, subject to normal distributions $ N _ {1} ( a , \sigma ^ {2} ) $ | ||
+ | and $ N _ {1} ( b , \sigma ^ {2} ) $, | ||
+ | respectively, where the parameters $ a $, | ||
+ | $ b $, | ||
+ | $ \sigma ^ {2} $ | ||
+ | are unknown. Then the hypothesis $ H _ {0} $: | ||
+ | $ a = b = 0 $ | ||
+ | is the linear hypothesis, while a hypothesis $ a = a _ {0} $, | ||
+ | $ b = b _ {0} $ | ||
+ | with $ a _ {0} \neq b _ {0} $ | ||
+ | is not linear. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | However, such a linear hypothesis | + | However, such a linear hypothesis $ a = a _ {0} $, |
+ | $ b = b _ {0} $ | ||
+ | with $ a _ {0} \neq b _ {0} $ | ||
+ | does correspond to a linear hypothesis concerning the means of the transformed quantities $ Y _ {i} ^ \prime = Y _ {i} - a _ {0} $, | ||
+ | $ Z _ {i} ^ \prime = Z _ {i} - b _ {0} $. |
Latest revision as of 22:17, 5 June 2020
A statistical hypothesis according to which the mean $ a $
of an $ n $-
dimensional normal law $ N _ {n} ( a , \sigma ^ {2} I ) $(
where $ I $
is the unit matrix), lying in a linear subspace $ \Pi ^ {s} \subset \mathbf R ^ {n} $
of dimension $ s < n $,
belongs to a linear subspace $ \Pi ^ {r} \subset \Pi ^ {s} $
of dimension $ r < s $.
Many problems of mathematical statistics can be reduced to the problem of testing a linear hypothesis, which is often stated in the following so-called canonical form. Let $ X = ( X _ {1} \dots X _ {n} ) $ be a normally distributed vector with independent components and let $ {\mathsf E} X _ {i} = a _ {i} $ for $ i = 1 \dots s $, $ {\mathsf E} X _ {i} = 0 $ for $ i = s + 1 \dots n $ and $ {\mathsf D} X _ {i} = \sigma ^ {2} $ for $ i = 1 \dots n $, where the quantities $ a _ {1} \dots a _ {s} $ are unknown. Then the hypothesis $ H _ {0} $, according to which
$$ a _ {1} = \dots = a _ {r} = 0 ,\ \ r < s < n , $$
is the canonical linear hypothesis.
Example. Let $ Y _ {1} \dots Y _ {n} $ and $ Z _ {1} \dots Z _ {m} $ be $ n + m $ independent random variables, subject to normal distributions $ N _ {1} ( a , \sigma ^ {2} ) $ and $ N _ {1} ( b , \sigma ^ {2} ) $, respectively, where the parameters $ a $, $ b $, $ \sigma ^ {2} $ are unknown. Then the hypothesis $ H _ {0} $: $ a = b = 0 $ is the linear hypothesis, while a hypothesis $ a = a _ {0} $, $ b = b _ {0} $ with $ a _ {0} \neq b _ {0} $ is not linear.
References
[1] | E.L. Lehmann, "Testing statistical hypotheses" , Wiley (1986) |
Comments
However, such a linear hypothesis $ a = a _ {0} $, $ b = b _ {0} $ with $ a _ {0} \neq b _ {0} $ does correspond to a linear hypothesis concerning the means of the transformed quantities $ Y _ {i} ^ \prime = Y _ {i} - a _ {0} $, $ Z _ {i} ^ \prime = Z _ {i} - b _ {0} $.
Linear hypothesis. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Linear_hypothesis&oldid=47657