Difference between revisions of "Limit set of a trajectory"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | l0589101.png | ||
+ | $#A+1 = 69 n = 0 | ||
+ | $#C+1 = 69 : ~/encyclopedia/old_files/data/L058/L.0508910 Limit set of a trajectory | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | '' $ \{ f ^ { t } x \} $ | |
+ | of a dynamical system $ f ^ { t } $'' | ||
− | + | The set $ A _ {x} $ | |
+ | of all $ \alpha $- | ||
+ | limit points (the $ \alpha $- | ||
+ | limit set) or the set $ \Omega _ {x} $ | ||
+ | of all $ \omega $- | ||
+ | limit points (the $ \omega $- | ||
+ | limit set) of this trajectory (cf. [[Limit point of a trajectory|Limit point of a trajectory]]). The $ \alpha $- | ||
+ | limit set ( $ \omega $- | ||
+ | limit set) of a trajectory $ \{ f ^ { t } x \} $ | ||
+ | of a system (or, in other notation, $ f ( t, x) $, | ||
+ | cf. [[#References|[1]]]) is the same as the $ \omega $- | ||
+ | limit set (respectively, $ \alpha $- | ||
+ | limit set) of the trajectory $ \{ f ^ { - t } x \} $ | ||
+ | of the [[Dynamical system|dynamical system]] $ f ^ { - t } $( | ||
+ | the system with reversed time). Therefore the properties of $ \alpha $- | ||
+ | limit sets are similar to those of $ \omega $- | ||
+ | limit sets. | ||
− | + | The set $ \Omega _ {x} $ | |
+ | is a closed invariant set. If $ \Omega _ {x} = \emptyset $, | ||
+ | then the trajectory $ \{ f ^ { t } x \} $ | ||
+ | is called divergent in the positive direction; if $ A _ {x} = \emptyset $, | ||
+ | divergent in the negative direction; if $ \Omega _ {x} = A _ {x} = \emptyset $, | ||
+ | the trajectory is called divergent. If $ x \in \Omega _ {x} $, | ||
+ | then $ x $ | ||
+ | is called positively Poisson stable; if $ x \in A _ {x} $, | ||
+ | negatively Poisson stable; and if $ x \in A _ {x} \cap \Omega _ {x} $, | ||
+ | then $ x $ | ||
+ | is called Poisson stable. If $ x \notin \Omega _ {x} $ | ||
+ | and $ \Omega _ {x} \neq \emptyset $, | ||
+ | then $ x $ | ||
+ | is called positively asymptotic; if $ x \notin A _ {x} $ | ||
+ | and $ A _ {x} \neq \emptyset $, | ||
+ | the point $ x $ | ||
+ | is called negatively asymptotic. | ||
− | + | If $ x $ | |
+ | is a positively Lagrange-stable point (cf. [[Lagrange stability|Lagrange stability]]), then $ \Omega _ {x} $ | ||
+ | is a non-empty connected set, | ||
− | + | $$ | |
+ | \lim\limits _ {t \rightarrow + \infty } \ | ||
+ | d ( f ^ { t } x, \Omega _ {x} ) = 0 | ||
+ | $$ | ||
− | where | + | (where $ d ( z, Y) $ |
+ | is the distance from a point $ z $ | ||
+ | to a set $ Y $) | ||
+ | and there is a [[Recurrent point|recurrent point]] (trajectory) in $ \Omega _ {x} $. | ||
+ | If $ x $ | ||
+ | is a fixed point, then $ \Omega _ {x} = \{ x \} $. | ||
+ | If $ x $ | ||
+ | is a periodic point, then | ||
+ | |||
+ | $$ | ||
+ | \Omega _ {x} = \ | ||
+ | \{ f ^ { t } x \} _ {t \in \mathbf R } = \ | ||
+ | \{ f ^ { t } x \} _ {t \in [ 0, T) } , | ||
+ | $$ | ||
+ | |||
+ | where $ T $ | ||
+ | is the period. If $ x $ | ||
+ | is not a fixed point and not a periodic point, and if the underlying metric space of the dynamical system under consideration is complete, then the points in $ \Omega _ {x} $ | ||
+ | not on the trajectory $ \{ f ^ { t } x \} $ | ||
+ | are everywhere-dense in $ \Omega _ {x} $. | ||
If a dynamical system in the plane is given by an [[Autonomous system|autonomous system]] of differential equations | If a dynamical system in the plane is given by an [[Autonomous system|autonomous system]] of differential equations | ||
− | + | $$ | |
+ | \dot{x} = f ( x),\ \ | ||
+ | x \in \mathbf R ^ {2} ,\ \ | ||
+ | f \in C ^ {1} | ||
+ | $$ | ||
− | (with a smooth vector field | + | (with a smooth vector field $ f $), |
+ | $ x $ | ||
+ | is positively Lagrange stable but not periodic, and $ f $ | ||
+ | does not vanish on $ \Omega _ {x} $( | ||
+ | i.e. $ \Omega _ {x} $ | ||
+ | does not contain fixed points), then $ \Omega _ {x} $ | ||
+ | is a cycle, i.e. a closed curve (the trajectory of a periodic point), while the trajectory $ \{ f ^ { t } x \} $ | ||
+ | winds, spiral-wise, around this cycle as $ t \rightarrow \infty $. | ||
+ | For dynamical systems in $ \mathbf R ^ {n} $, | ||
+ | $ n > 2 $, | ||
+ | or on a two-dimensional surface, e.g. a torus, the $ \omega $- | ||
+ | limit sets can have a different structure. E.g., for an irrational winding on a torus (the system $ \dot \phi = 1 $, | ||
+ | $ \dot \psi = \mu $, | ||
+ | where $ ( \phi , \psi ) ( \mathop{\rm mod} 1) $ | ||
+ | are cyclic coordinates on the torus $ T ^ {2} $ | ||
+ | and $ \mu $ | ||
+ | is an irrational number) the set $ \Omega _ {x} $ | ||
+ | coincides, for every $ x = ( \phi , \psi ) $, | ||
+ | with the torus. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.V. Nemytskii, V.V. Stepanov, "Qualitative theory of differential equations" , Princeton Univ. Press (1960) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.S. Pontryagin, "Ordinary differential equations" , Addison-Wesley (1962) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.V. Nemytskii, V.V. Stepanov, "Qualitative theory of differential equations" , Princeton Univ. Press (1960) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.S. Pontryagin, "Ordinary differential equations" , Addison-Wesley (1962) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Revision as of 22:16, 5 June 2020
$ \{ f ^ { t } x \} $
of a dynamical system $ f ^ { t } $
The set $ A _ {x} $ of all $ \alpha $- limit points (the $ \alpha $- limit set) or the set $ \Omega _ {x} $ of all $ \omega $- limit points (the $ \omega $- limit set) of this trajectory (cf. Limit point of a trajectory). The $ \alpha $- limit set ( $ \omega $- limit set) of a trajectory $ \{ f ^ { t } x \} $ of a system (or, in other notation, $ f ( t, x) $, cf. [1]) is the same as the $ \omega $- limit set (respectively, $ \alpha $- limit set) of the trajectory $ \{ f ^ { - t } x \} $ of the dynamical system $ f ^ { - t } $( the system with reversed time). Therefore the properties of $ \alpha $- limit sets are similar to those of $ \omega $- limit sets.
The set $ \Omega _ {x} $ is a closed invariant set. If $ \Omega _ {x} = \emptyset $, then the trajectory $ \{ f ^ { t } x \} $ is called divergent in the positive direction; if $ A _ {x} = \emptyset $, divergent in the negative direction; if $ \Omega _ {x} = A _ {x} = \emptyset $, the trajectory is called divergent. If $ x \in \Omega _ {x} $, then $ x $ is called positively Poisson stable; if $ x \in A _ {x} $, negatively Poisson stable; and if $ x \in A _ {x} \cap \Omega _ {x} $, then $ x $ is called Poisson stable. If $ x \notin \Omega _ {x} $ and $ \Omega _ {x} \neq \emptyset $, then $ x $ is called positively asymptotic; if $ x \notin A _ {x} $ and $ A _ {x} \neq \emptyset $, the point $ x $ is called negatively asymptotic.
If $ x $ is a positively Lagrange-stable point (cf. Lagrange stability), then $ \Omega _ {x} $ is a non-empty connected set,
$$ \lim\limits _ {t \rightarrow + \infty } \ d ( f ^ { t } x, \Omega _ {x} ) = 0 $$
(where $ d ( z, Y) $ is the distance from a point $ z $ to a set $ Y $) and there is a recurrent point (trajectory) in $ \Omega _ {x} $. If $ x $ is a fixed point, then $ \Omega _ {x} = \{ x \} $. If $ x $ is a periodic point, then
$$ \Omega _ {x} = \ \{ f ^ { t } x \} _ {t \in \mathbf R } = \ \{ f ^ { t } x \} _ {t \in [ 0, T) } , $$
where $ T $ is the period. If $ x $ is not a fixed point and not a periodic point, and if the underlying metric space of the dynamical system under consideration is complete, then the points in $ \Omega _ {x} $ not on the trajectory $ \{ f ^ { t } x \} $ are everywhere-dense in $ \Omega _ {x} $.
If a dynamical system in the plane is given by an autonomous system of differential equations
$$ \dot{x} = f ( x),\ \ x \in \mathbf R ^ {2} ,\ \ f \in C ^ {1} $$
(with a smooth vector field $ f $), $ x $ is positively Lagrange stable but not periodic, and $ f $ does not vanish on $ \Omega _ {x} $( i.e. $ \Omega _ {x} $ does not contain fixed points), then $ \Omega _ {x} $ is a cycle, i.e. a closed curve (the trajectory of a periodic point), while the trajectory $ \{ f ^ { t } x \} $ winds, spiral-wise, around this cycle as $ t \rightarrow \infty $. For dynamical systems in $ \mathbf R ^ {n} $, $ n > 2 $, or on a two-dimensional surface, e.g. a torus, the $ \omega $- limit sets can have a different structure. E.g., for an irrational winding on a torus (the system $ \dot \phi = 1 $, $ \dot \psi = \mu $, where $ ( \phi , \psi ) ( \mathop{\rm mod} 1) $ are cyclic coordinates on the torus $ T ^ {2} $ and $ \mu $ is an irrational number) the set $ \Omega _ {x} $ coincides, for every $ x = ( \phi , \psi ) $, with the torus.
References
[1] | V.V. Nemytskii, V.V. Stepanov, "Qualitative theory of differential equations" , Princeton Univ. Press (1960) (Translated from Russian) |
[2] | L.S. Pontryagin, "Ordinary differential equations" , Addison-Wesley (1962) (Translated from Russian) |
Comments
Instead of "divergent in the positive direction" , "divergent in the negative direction" and "divergent" , also the terms positively receding, negatively receding and receding are used.
The statement above about the cyclic structure of certain limit sets in a dynamical system in the plane is part of the so-called Poincaré–Bendixson theorem (cf. Poincaré–Bendixson theory and also Limit cycle). It is valid for arbitrary dynamical systems in the plane (not necessarily given by differential equations). See [a3], Sect. VIII.1 or, for an approach avoiding local cross-sections, [a1], Chapt. 2. It follows also from [a2].
References
[a1] | A. Beck, "Continuous flows in the plane" , Springer (1974) |
[a2] | C. Gutierrez, "Smoothing continuous flows on two-manifolds and recurrences" Ergodic Theory and Dynam. Syst. , 6 (1986) pp. 17–44 |
[a3] | O. Hajek, "Dynamical systems in the plane" , Acad. Press (1968) |
Limit set of a trajectory. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Limit_set_of_a_trajectory&oldid=47639